| [1] |
LEVINE S M and MARCINIUK D D. Global impact of respiratory disease: What can we do, together, to make a difference?[J]. Chest, 2022, 161(5): 1153–1154. doi: 10.1016/j.chest.2022.01.014.
|
| [2] |
NADA H, CHOI Y, KIM S, et al. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance[J]. Signal Transduction and Targeted Therapy, 2024, 9(1): 341. doi: 10.1038/s41392-024-02036-3.
|
| [3] |
TRAJANOSKA K, BHÉRER C, TALIUN D, et al. From target discovery to clinical drug development with human genetics[J]. Nature, 2023, 620(7975): 737–745. doi: 10.1038/s41586-023-06388-8.
|
| [4] |
FERKINGSTAD E, SULEM P, ATLASON B A, et al. Large-scale integration of the plasma proteome with genetics and disease[J]. Nature Genetics, 2021, 53(12): 1712–1721. doi: 10.1038/s41588-021-00978-w.
|
| [5] |
SUN B B, CHIOU J, TRAYLOR M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329–338. doi: 10.1038/s41586-023-06592-6.
|
| [6] |
BIRNEY E. Mendelian randomization[J]. Cold Spring Harbor Perspectives in Medicine, 2022, 12(4): a041302. doi: 10.1101/cshperspect.a041302.
|
| [7] |
SANDERSON E, GLYMOUR M M, HOLMES M V, et al. Mendelian randomization[J]. Nature Reviews Methods Primers, 2022, 2(1): 6. doi: 10.1038/s43586-021-00092-5.
|
| [8] |
HINGORANI A and HUMPHRIES S. Nature's randomised trials[J]. The Lancet, 2005, 366(9501): 1906–1908. doi: 10.1016/s0140-6736(05)67767-7.
|
| [9] |
PIETZNER M, WHEELER E, CARRASCO-ZANINI J, et al. Mapping the proteo-genomic convergence of human diseases[J]. Science, 2021, 374(6569): eabj1541. doi: 10.1126/science.abj1541.
|
| [10] |
FOLKERSEN L, GUSTAFSSON S, WANG Qin, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30, 931 individuals[J]. Nature Metabolism, 2020, 2(10): 1135–1148. doi: 10.1038/s42255-020-00287-2.
|
| [11] |
SUN B B, MARANVILLE J C, PETERS J E, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73–79. doi: 10.1038/s41586-018-0175-2.
|
| [12] |
SUHRE K, ARNOLD M, BHAGWAT A M, et al. Connecting genetic risk to disease end points through the human blood plasma proteome[J]. Nature Communications, 2017, 8(1): 14357. doi: 10.1038/ncomms14357.
|
| [13] |
YAO Chen, CHEN G, SONG Ci, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease[J]. Nature Communications, 2018, 9(1): 3268. doi: 10.1038/s41467-018-05512-x.
|
| [14] |
MONTGOMERY S B and DERMITZAKIS E T. From expression QTLs to personalized transcriptomics[J]. Nature Reviews Genetics, 2011, 12(4): 277–282. doi: 10.1038/nrg2969.
|
| [15] |
HEMANI G, ZHENG Jie, ELSWORTH B, et al. The MR-base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. doi: 10.7554/eLife.34408.
|
| [16] |
SUN Jing, ZHAO Jianhui, JIANG Fangyuan, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome[J]. Genome Medicine, 2023, 15(1): 75. doi: 10.1186/s13073-023-01229-9.
|
| [17] |
ZHOU Wei, KANAI M, WU K H H, et al. Global biobank meta-analysis initiative: Powering genetic discovery across human disease[J]. Cell Genomics, 2022, 2(10): 100192. doi: 10.1016/j.xgen.2022.100192.
|
| [18] |
MCKAY J D, HUNG R J, HAN Younghun, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes[J]. Nature Genetics, 2017, 49(7): 1126–1132. doi: 10.1038/ng.3892.
|
| [19] |
RHODES C J, BATAI K, BLEDA M, et al. Genetic determinants of risk in pulmonary arterial hypertension: International genome-wide association studies and meta-analysis[J]. The Lancet Respiratory Medicine, 2019, 7(3): 227–238. doi: 10.1016/s2213-2600(18)30409-0.
|
| [20] |
BOWDEN J, SMITH G D, HAYCOCK P C, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genetic Epidemiology, 2016, 40(4): 304–314. doi: 10.1002/gepi.21965.
|
| [21] |
FOLEY C N, STALEY J R, BREEN P G, et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits[J]. Nature Communications, 2021, 12(1): 764. doi: 10.1038/s41467-020-20885-8.
|
| [22] |
GIAMBARTOLOMEI C, VUKCEVIC D, SCHADT E E, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PLoS Genetics, 2014, 10(5): e1004383. doi: 10.1371/journal.pgen.1004383.
|
| [23] |
LIU Boxiang, GLOUDEMANS M J, RAO A S, et al. Abundant associations with gene expression complicate GWAS follow-up[J]. Nature Genetics, 2019, 51(5): 768–769. doi: 10.1038/s41588-019-0404-0.
|
| [24] |
SZKLARCZYK D, KIRSCH R, KOUTROULI M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Research, 2023, 51(D1): D638–D646. doi: 10.1093/nar/gkac1000.
|
| [25] |
WU Yang, ZENG Jian, ZHANG Futao, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits[J]. Nature Communications, 2018, 9(1): 918. doi: 10.1038/s41467-018-03371-0.
|
| [26] |
HEMANI G, TILLING K, and SMITH G D. Orienting the causal relationship between imprecisely measured traits using GWAS summary data[J]. PLoS Genetics, 2017, 13(11): e1007081. doi: 10.1371/journal.pgen.1007081.
|
| [27] |
GOMEZ A M, TRAUNMÜLLER L, and SCHEIFFELE P. Neurexins: Molecular codes for shaping neuronal synapses[J]. Nature Reviews Neuroscience, 2021, 22(3): 137–151. doi: 10.1038/s41583-020-00415-7.
|
| [28] |
SUNG Y J, DE LAS FUENTES L, SCHWANDER K L, et al. Gene-smoking interactions identify several novel blood pressure loci in the framingham heart study[J]. American Journal of Hypertension, 2015, 28(3): 343–354. doi: 10.1093/ajh/hpu149.
|
| [29] |
GÜLEÇ G, COŞAN D T, ŞAHIN F M, et al. Association of nicotine use disorder with neurexin 3 gene polymorphisms[J]. Turkish Journal of Psychiatry, 2021, 32(3): 160–166. doi: 10.5080/u25686.
|
| [30] |
SONG Qing, CHEN Ping, and LIU Xiangming. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD[J]. Respiratory Research, 2021, 22(1): 39. doi: 10.1186/s12931-021-01630-1.
|
| [31] |
WANG Zihan, QIU Yifan, JI Xiang, et al. Effects of smoking cessation on individuals with COPD: A systematic review and meta-analysis[J]. Frontiers in Public Health, 2024, 12: 1433269. doi: 10.3389/fpubh.2024.1433269.
|
| [32] |
MCDONALD F J. COMMD1 and ion transport proteins: What is the COMMection? Focus on "COMMD1 interacts with the COOH terminus of NKCC1 in Calu-3 airway epithelial cells to modulate NKCC1 ubiquitination"[J]. American Journal of Physiology-Cell Physiology, 2013, 305(2): C129–C130. doi: 10.1152/ajpcell.00128.2013.
|
| [33] |
MURATA K, FANG C, TERAO C, et al. Hypoxia-sensitive COMMD1 integrates signaling and cellular metabolism in human macrophages and suppresses osteoclastogenesis[J]. Immunity, 2017, 47(1): 66–79. e5. doi: 10.1016/j.immuni.2017.06.018.
|
| [34] |
BESIKTEPE N, KAYALAR O, ERSEN E, et al. The copper dependent-lysyl oxidases contribute to the pathogenesis of pulmonary emphysema in chronic obstructive pulmonary disease patients[J]. Journal of Trace Elements in Medicine and Biology, 2017, 44: 247–255. doi: 10.1016/j.jtemb.2017.08.011.
|
| [35] |
FRITSCH M, GÜNTHER S D, SCHWARZER R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis[J]. Nature, 2019, 575(7784): 683–687. doi: 10.1038/s41586-019-1770-6.
|
| [36] |
FENG Yuanyu, LI Min, YANGZHONG Xiaoting, et al. Pyroptosis in inflammation-related respiratory disease[J]. Journal of Physiology and Biochemistry, 2022, 78(4): 721–737. doi: 10.1007/s13105-022-00909-1.
|
| [37] |
SMITH A K, LANGE L A, AMPLEFORD E J, et al. Association of polymorphisms in CASP10 and CASP8 with FEV1/FVC and bronchial hyperresponsiveness in ethnically diverse asthmatics[J]. Clinical & Experimental Allergy, 2008, 38(11): 1738–1744. doi: 10.1111/j.1365-2222.2008.03095.x.
|
| [38] |
QI X, GURUNG P, MALIREDDI R K, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis[J]. Mucosal Immunology, 2017, 10(1): 128–138. doi: 10.1038/mi.2016.25.
|
| [39] |
CEREDIG R and ROLINK A G. The key role of IL-7 in lymphopoiesis[J]. Seminars in Immunology, 2012, 24(3): 159–164. doi: 10.1016/j.smim.2012.02.004.
|
| [40] |
KELLY E A B, KOZIOL C, CLAY K J, et al. Potential contribution of IL-7 to allergen-induced eosinophilic airway inflammation in asthma[J]. The Journal of Immunology, 2009, 182(3): 1404–1410. doi: 10.4049/jimmunol.182.3.1404.
|
| [41] |
DU Junwei, XU Zelan, and XU Qinxing. Interaction of interleukin 7 receptor (IL7R) and IL6 gene polymorphisms with smoking associated with susceptibility to asthma in Chinese han adults[J]. Immunological Investigations, 2022, 51(5): 1364–1371. doi: 10.1080/08820139.2021.1941083.
|
| [42] |
LE MAI H, VAN HA NGUYEN T, BOUCHAUD G, et al. Targeting the interleukin-7 receptor alpha by an anti-CD127 monoclonal antibody improves allergic airway inflammation in mice[J]. Clinical & Experimental Allergy, 2020, 50(7): 824–834. doi: 10.1111/cea.13665.
|
| [43] |
VARRICCHI G, FERRI S, PEPYS J, et al. Biologics and airway remodeling in severe asthma[J]. Allergy, 2022, 77(12): 3538–3552. doi: 10.1111/all.15473.
|
| [44] |
POIRIER N, BACCELLI I, BELARIF L, et al. First-in-human study in healthy subjects with the noncytotoxic monoclonal antibody OSE-127, a strict antagonist of IL-7Rα[J]. The Journal of Immunology, 2023, 210(6): 753–763. doi: 10.4049/jimmunol.2200635.
|
| [45] |
ELLIS J, VAN MAURIK A, FORTUNATO L, et al. Anti-IL-7 receptor α monoclonal antibody (GSK2618960) in healthy subjects - a randomized, double-blind, placebo-controlled study[J]. British Journal of Clinical Pharmacology, 2019, 85(2): 304–315. doi: 10.1111/bcp.13748.
|
| [46] |
DUPUY F, GERMOT A, MARENDA M, et al. α, 4-fucosyltransferase activity: A significant function in the primate lineage has appeared twice independently[J]. Molecular Biology and Evolution, 2002, 19(6): 815–824. doi: 10.1093/oxfordjournals.molbev.a004138.
|
| [47] |
NAKANISHI T, CERANI A, FORGETTA V, et al. Genetically increased circulating FUT3 level leads to reduced risk of idiopathic pulmonary fibrosis: A Mendelian randomisation study[J]. European Respiratory Journal, 2022, 59(2): 2003979. doi: 10.1183/13993003.03979-2020.
|
| [48] |
DUFFETT L. Deep venous thrombosis[J]. Annals of Internal Medicine, 2022, 175(9): ITC129–ITC144. doi: 10.7326/aitc202209200.
|
| [49] |
RODRIGUEZ B A T, BHAN A, BESWICK A, et al. A platelet function modulator of thrombin activation is causally linked to cardiovascular disease and affects PAR4 receptor signaling[J]. American Journal of Human Genetics, 2020, 107(2): 211–221. doi: 10.1016/j.ajhg.2020.06.008.
|
| [50] |
ELVERS M, POZGAJ R, PLEINES I, et al. Platelet hyperreactivity and a prothrombotic phenotype in mice with a gain-of-function mutation in phospholipase Cγ2[J]. Journal of Thrombosis and Haemostasis, 2010, 8(6): 1353–1363. doi: 10.1111/j.1538-7836.2010.03838.x.
|
| [51] |
LI Haobo, ZHANG Zhu, QIU Yuting, et al. Proteome-wide mendelian randomization identifies causal plasma proteins in venous thromboembolism development[J]. Journal of Human Genetics, 2023, 68(12): 805–812. doi: 10.1038/s10038-023-01186-6.
|
| [52] |
LEAVIS H L, VAN DE VEERDONK F L, and MURTHY S. Stimulating severe COVID-19: The potential role of GM-CSF antagonism[J]. The Lancet Respiratory Medicine, 2022, 10(3): 223–224. doi: 10.1016/s2213-2600(21)00539-7.
|
| [53] |
BOSTEELS C, VAN DAMME K F A, DE LEEUW E, et al. Loss of GM-CSF-dependent instruction of alveolar macrophages in COVID-19 provides a rationale for inhaled GM-CSF treatment[J]. Cell Reports Medicine, 2022, 3(12): 100833. doi: 10.1016/j.xcrm.2022.100833.
|
| [54] |
CHENG Linling, GUAN Weijie, DUAN Chongyang, et al. Effect of recombinant human granulocyte colony-stimulating factor for patients with coronavirus disease 2019 (COVID-19) and lymphopenia: A randomized clinical trial[J]. JAMA Internal Medicine, 2021, 181(1): 71–78. doi: 10.1001/jamainternmed.2020.5503.
|
| [55] |
KARUNAKARAN M M, WILLCOX C R, SALIM M, et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing[J]. Immunity, 2020, 52(3): 487–498. e6. doi: 10.1016/j.immuni.2020.02.014.
|
| [56] |
PAYNE K K, MINE J A, BISWAS S, et al. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells[J]. Science, 2020, 369(6506): 942–949. doi: 10.1126/science.aay2767.
|
| [57] |
CANO C E, PASERO C, DE GASSART A, et al. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells[J]. Cell Reports, 2021, 36(2): 109359. doi: 10.1016/j.celrep.2021.109359.
|
| [58] |
VYBOROVA A, BERINGER D X, FASCI D, et al. γ9δ2T cell diversity and the receptor interface with tumor cells[J]. The Journal of Clinical Investigation, 2020, 130(9): 4637–4651. doi: 10.1172/jci132489.
|