高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

整合血浆蛋白质组与全基因组关联研究鉴定呼吸系统疾病新型药物靶标

马昕茜 倪文涛

马昕茜, 倪文涛. 整合血浆蛋白质组与全基因组关联研究鉴定呼吸系统疾病新型药物靶标[J]. 电子与信息学报. doi: 10.11999/JEIT250796
引用本文: 马昕茜, 倪文涛. 整合血浆蛋白质组与全基因组关联研究鉴定呼吸系统疾病新型药物靶标[J]. 电子与信息学报. doi: 10.11999/JEIT250796
MA Xinqian, NI Wentao. Identification of Novel Protein Drug Targets for Respiratory Diseases by Integrating Human Plasma Proteome with Genome[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250796
Citation: MA Xinqian, NI Wentao. Identification of Novel Protein Drug Targets for Respiratory Diseases by Integrating Human Plasma Proteome with Genome[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250796

整合血浆蛋白质组与全基因组关联研究鉴定呼吸系统疾病新型药物靶标

doi: 10.11999/JEIT250796 cstr: 32379.14.JEIT250796
基金项目: 国家自然科学基金(81903672)
详细信息
    作者简介:

    马昕茜:女,博士生,研究方向为医工交叉、呼吸系统感染疾病的临床与基础研究

    倪文涛:男,副研究员,研究方向为医工交叉、智慧医疗、呼吸系统感染疾病的临床与基础研究

    通讯作者:

    倪文涛 wentao.qingdao@163.com

  • 中图分类号: XXX

Identification of Novel Protein Drug Targets for Respiratory Diseases by Integrating Human Plasma Proteome with Genome

Funds: The National Natural Science Foundation of China (81903672)
  • 摘要: 呼吸系统疾病严重危害人类健康,其病因学机制解析与新型药物靶点发掘一直是医学研究的重点领域。该文采用蛋白质组孟德尔随机化(MR)与共定位分析,利用大规模蛋白质定量性状位点汇总数据,评估血浆蛋白与27种呼吸系统疾病表型的因果关联,并进行共定位分析以控制混杂因素及连锁不平衡的潜在偏倚。采用验证队列MR分析以及基于汇总数据的孟德尔随机化分析(SMR)验证因果关联,并通过双向MR及Steiger检验评估反向因果关联。结果显示MR分析共识别出600组血浆蛋白-疾病表型关联,其中29组关联共定位分析结果为阳性(PP4>0.8),26组关联SMR分析为阳性。该研究确定了NRX3A等5种蛋白与慢性阻塞性肺病、IL7R等3种蛋白与哮喘、FUT3_FUT5与特发性肺纤维化的显著关联,并发现CSF3与重症COVID-19,BTN2A1等与不同亚型肺癌的因果关联。综上,该研究揭示多种与呼吸系统疾病相关的血浆蛋白,为疾病机制研究及药物研发提供新方向。
  • 图  1  研究设计流程图

    图  2  血浆蛋白与呼吸系统疾病的MR分析及共定位总体结果

  • [1] LEVINE S M and MARCINIUK D D. Global impact of respiratory disease: What can we do, together, to make a difference?[J]. Chest, 2022, 161(5): 1153–1154. doi: 10.1016/j.chest.2022.01.014.
    [2] NADA H, CHOI Y, KIM S, et al. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance[J]. Signal Transduction and Targeted Therapy, 2024, 9(1): 341. doi: 10.1038/s41392-024-02036-3.
    [3] TRAJANOSKA K, BHÉRER C, TALIUN D, et al. From target discovery to clinical drug development with human genetics[J]. Nature, 2023, 620(7975): 737–745. doi: 10.1038/s41586-023-06388-8.
    [4] FERKINGSTAD E, SULEM P, ATLASON B A, et al. Large-scale integration of the plasma proteome with genetics and disease[J]. Nature Genetics, 2021, 53(12): 1712–1721. doi: 10.1038/s41588-021-00978-w.
    [5] SUN B B, CHIOU J, TRAYLOR M, et al. Plasma proteomic associations with genetics and health in the UK Biobank[J]. Nature, 2023, 622(7982): 329–338. doi: 10.1038/s41586-023-06592-6.
    [6] BIRNEY E. Mendelian randomization[J]. Cold Spring Harbor Perspectives in Medicine, 2022, 12(4): a041302. doi: 10.1101/cshperspect.a041302.
    [7] SANDERSON E, GLYMOUR M M, HOLMES M V, et al. Mendelian randomization[J]. Nature Reviews Methods Primers, 2022, 2(1): 6. doi: 10.1038/s43586-021-00092-5.
    [8] HINGORANI A and HUMPHRIES S. Nature's randomised trials[J]. The Lancet, 2005, 366(9501): 1906–1908. doi: 10.1016/s0140-6736(05)67767-7.
    [9] PIETZNER M, WHEELER E, CARRASCO-ZANINI J, et al. Mapping the proteo-genomic convergence of human diseases[J]. Science, 2021, 374(6569): eabj1541. doi: 10.1126/science.abj1541.
    [10] FOLKERSEN L, GUSTAFSSON S, WANG Qin, et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30, 931 individuals[J]. Nature Metabolism, 2020, 2(10): 1135–1148. doi: 10.1038/s42255-020-00287-2.
    [11] SUN B B, MARANVILLE J C, PETERS J E, et al. Genomic atlas of the human plasma proteome[J]. Nature, 2018, 558(7708): 73–79. doi: 10.1038/s41586-018-0175-2.
    [12] SUHRE K, ARNOLD M, BHAGWAT A M, et al. Connecting genetic risk to disease end points through the human blood plasma proteome[J]. Nature Communications, 2017, 8(1): 14357. doi: 10.1038/ncomms14357.
    [13] YAO Chen, CHEN G, SONG Ci, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease[J]. Nature Communications, 2018, 9(1): 3268. doi: 10.1038/s41467-018-05512-x.
    [14] MONTGOMERY S B and DERMITZAKIS E T. From expression QTLs to personalized transcriptomics[J]. Nature Reviews Genetics, 2011, 12(4): 277–282. doi: 10.1038/nrg2969.
    [15] HEMANI G, ZHENG Jie, ELSWORTH B, et al. The MR-base platform supports systematic causal inference across the human phenome[J]. eLife, 2018, 7: e34408. doi: 10.7554/eLife.34408.
    [16] SUN Jing, ZHAO Jianhui, JIANG Fangyuan, et al. Identification of novel protein biomarkers and drug targets for colorectal cancer by integrating human plasma proteome with genome[J]. Genome Medicine, 2023, 15(1): 75. doi: 10.1186/s13073-023-01229-9.
    [17] ZHOU Wei, KANAI M, WU K H H, et al. Global biobank meta-analysis initiative: Powering genetic discovery across human disease[J]. Cell Genomics, 2022, 2(10): 100192. doi: 10.1016/j.xgen.2022.100192.
    [18] MCKAY J D, HUNG R J, HAN Younghun, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes[J]. Nature Genetics, 2017, 49(7): 1126–1132. doi: 10.1038/ng.3892.
    [19] RHODES C J, BATAI K, BLEDA M, et al. Genetic determinants of risk in pulmonary arterial hypertension: International genome-wide association studies and meta-analysis[J]. The Lancet Respiratory Medicine, 2019, 7(3): 227–238. doi: 10.1016/s2213-2600(18)30409-0.
    [20] BOWDEN J, SMITH G D, HAYCOCK P C, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator[J]. Genetic Epidemiology, 2016, 40(4): 304–314. doi: 10.1002/gepi.21965.
    [21] FOLEY C N, STALEY J R, BREEN P G, et al. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits[J]. Nature Communications, 2021, 12(1): 764. doi: 10.1038/s41467-020-20885-8.
    [22] GIAMBARTOLOMEI C, VUKCEVIC D, SCHADT E E, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics[J]. PLoS Genetics, 2014, 10(5): e1004383. doi: 10.1371/journal.pgen.1004383.
    [23] LIU Boxiang, GLOUDEMANS M J, RAO A S, et al. Abundant associations with gene expression complicate GWAS follow-up[J]. Nature Genetics, 2019, 51(5): 768–769. doi: 10.1038/s41588-019-0404-0.
    [24] SZKLARCZYK D, KIRSCH R, KOUTROULI M, et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Research, 2023, 51(D1): D638–D646. doi: 10.1093/nar/gkac1000.
    [25] WU Yang, ZENG Jian, ZHANG Futao, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits[J]. Nature Communications, 2018, 9(1): 918. doi: 10.1038/s41467-018-03371-0.
    [26] HEMANI G, TILLING K, and SMITH G D. Orienting the causal relationship between imprecisely measured traits using GWAS summary data[J]. PLoS Genetics, 2017, 13(11): e1007081. doi: 10.1371/journal.pgen.1007081.
    [27] GOMEZ A M, TRAUNMÜLLER L, and SCHEIFFELE P. Neurexins: Molecular codes for shaping neuronal synapses[J]. Nature Reviews Neuroscience, 2021, 22(3): 137–151. doi: 10.1038/s41583-020-00415-7.
    [28] SUNG Y J, DE LAS FUENTES L, SCHWANDER K L, et al. Gene-smoking interactions identify several novel blood pressure loci in the framingham heart study[J]. American Journal of Hypertension, 2015, 28(3): 343–354. doi: 10.1093/ajh/hpu149.
    [29] GÜLEÇ G, COŞAN D T, ŞAHIN F M, et al. Association of nicotine use disorder with neurexin 3 gene polymorphisms[J]. Turkish Journal of Psychiatry, 2021, 32(3): 160–166. doi: 10.5080/u25686.
    [30] SONG Qing, CHEN Ping, and LIU Xiangming. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD[J]. Respiratory Research, 2021, 22(1): 39. doi: 10.1186/s12931-021-01630-1.
    [31] WANG Zihan, QIU Yifan, JI Xiang, et al. Effects of smoking cessation on individuals with COPD: A systematic review and meta-analysis[J]. Frontiers in Public Health, 2024, 12: 1433269. doi: 10.3389/fpubh.2024.1433269.
    [32] MCDONALD F J. COMMD1 and ion transport proteins: What is the COMMection? Focus on "COMMD1 interacts with the COOH terminus of NKCC1 in Calu-3 airway epithelial cells to modulate NKCC1 ubiquitination"[J]. American Journal of Physiology-Cell Physiology, 2013, 305(2): C129–C130. doi: 10.1152/ajpcell.00128.2013.
    [33] MURATA K, FANG C, TERAO C, et al. Hypoxia-sensitive COMMD1 integrates signaling and cellular metabolism in human macrophages and suppresses osteoclastogenesis[J]. Immunity, 2017, 47(1): 66–79. e5. doi: 10.1016/j.immuni.2017.06.018.
    [34] BESIKTEPE N, KAYALAR O, ERSEN E, et al. The copper dependent-lysyl oxidases contribute to the pathogenesis of pulmonary emphysema in chronic obstructive pulmonary disease patients[J]. Journal of Trace Elements in Medicine and Biology, 2017, 44: 247–255. doi: 10.1016/j.jtemb.2017.08.011.
    [35] FRITSCH M, GÜNTHER S D, SCHWARZER R, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis[J]. Nature, 2019, 575(7784): 683–687. doi: 10.1038/s41586-019-1770-6.
    [36] FENG Yuanyu, LI Min, YANGZHONG Xiaoting, et al. Pyroptosis in inflammation-related respiratory disease[J]. Journal of Physiology and Biochemistry, 2022, 78(4): 721–737. doi: 10.1007/s13105-022-00909-1.
    [37] SMITH A K, LANGE L A, AMPLEFORD E J, et al. Association of polymorphisms in CASP10 and CASP8 with FEV1/FVC and bronchial hyperresponsiveness in ethnically diverse asthmatics[J]. Clinical & Experimental Allergy, 2008, 38(11): 1738–1744. doi: 10.1111/j.1365-2222.2008.03095.x.
    [38] QI X, GURUNG P, MALIREDDI R K, et al. Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis[J]. Mucosal Immunology, 2017, 10(1): 128–138. doi: 10.1038/mi.2016.25.
    [39] CEREDIG R and ROLINK A G. The key role of IL-7 in lymphopoiesis[J]. Seminars in Immunology, 2012, 24(3): 159–164. doi: 10.1016/j.smim.2012.02.004.
    [40] KELLY E A B, KOZIOL C, CLAY K J, et al. Potential contribution of IL-7 to allergen-induced eosinophilic airway inflammation in asthma[J]. The Journal of Immunology, 2009, 182(3): 1404–1410. doi: 10.4049/jimmunol.182.3.1404.
    [41] DU Junwei, XU Zelan, and XU Qinxing. Interaction of interleukin 7 receptor (IL7R) and IL6 gene polymorphisms with smoking associated with susceptibility to asthma in Chinese han adults[J]. Immunological Investigations, 2022, 51(5): 1364–1371. doi: 10.1080/08820139.2021.1941083.
    [42] LE MAI H, VAN HA NGUYEN T, BOUCHAUD G, et al. Targeting the interleukin-7 receptor alpha by an anti-CD127 monoclonal antibody improves allergic airway inflammation in mice[J]. Clinical & Experimental Allergy, 2020, 50(7): 824–834. doi: 10.1111/cea.13665.
    [43] VARRICCHI G, FERRI S, PEPYS J, et al. Biologics and airway remodeling in severe asthma[J]. Allergy, 2022, 77(12): 3538–3552. doi: 10.1111/all.15473.
    [44] POIRIER N, BACCELLI I, BELARIF L, et al. First-in-human study in healthy subjects with the noncytotoxic monoclonal antibody OSE-127, a strict antagonist of IL-7Rα[J]. The Journal of Immunology, 2023, 210(6): 753–763. doi: 10.4049/jimmunol.2200635.
    [45] ELLIS J, VAN MAURIK A, FORTUNATO L, et al. Anti-IL-7 receptor α monoclonal antibody (GSK2618960) in healthy subjects - a randomized, double-blind, placebo-controlled study[J]. British Journal of Clinical Pharmacology, 2019, 85(2): 304–315. doi: 10.1111/bcp.13748.
    [46] DUPUY F, GERMOT A, MARENDA M, et al. α, 4-fucosyltransferase activity: A significant function in the primate lineage has appeared twice independently[J]. Molecular Biology and Evolution, 2002, 19(6): 815–824. doi: 10.1093/oxfordjournals.molbev.a004138.
    [47] NAKANISHI T, CERANI A, FORGETTA V, et al. Genetically increased circulating FUT3 level leads to reduced risk of idiopathic pulmonary fibrosis: A Mendelian randomisation study[J]. European Respiratory Journal, 2022, 59(2): 2003979. doi: 10.1183/13993003.03979-2020.
    [48] DUFFETT L. Deep venous thrombosis[J]. Annals of Internal Medicine, 2022, 175(9): ITC129–ITC144. doi: 10.7326/aitc202209200.
    [49] RODRIGUEZ B A T, BHAN A, BESWICK A, et al. A platelet function modulator of thrombin activation is causally linked to cardiovascular disease and affects PAR4 receptor signaling[J]. American Journal of Human Genetics, 2020, 107(2): 211–221. doi: 10.1016/j.ajhg.2020.06.008.
    [50] ELVERS M, POZGAJ R, PLEINES I, et al. Platelet hyperreactivity and a prothrombotic phenotype in mice with a gain-of-function mutation in phospholipase Cγ2[J]. Journal of Thrombosis and Haemostasis, 2010, 8(6): 1353–1363. doi: 10.1111/j.1538-7836.2010.03838.x.
    [51] LI Haobo, ZHANG Zhu, QIU Yuting, et al. Proteome-wide mendelian randomization identifies causal plasma proteins in venous thromboembolism development[J]. Journal of Human Genetics, 2023, 68(12): 805–812. doi: 10.1038/s10038-023-01186-6.
    [52] LEAVIS H L, VAN DE VEERDONK F L, and MURTHY S. Stimulating severe COVID-19: The potential role of GM-CSF antagonism[J]. The Lancet Respiratory Medicine, 2022, 10(3): 223–224. doi: 10.1016/s2213-2600(21)00539-7.
    [53] BOSTEELS C, VAN DAMME K F A, DE LEEUW E, et al. Loss of GM-CSF-dependent instruction of alveolar macrophages in COVID-19 provides a rationale for inhaled GM-CSF treatment[J]. Cell Reports Medicine, 2022, 3(12): 100833. doi: 10.1016/j.xcrm.2022.100833.
    [54] CHENG Linling, GUAN Weijie, DUAN Chongyang, et al. Effect of recombinant human granulocyte colony-stimulating factor for patients with coronavirus disease 2019 (COVID-19) and lymphopenia: A randomized clinical trial[J]. JAMA Internal Medicine, 2021, 181(1): 71–78. doi: 10.1001/jamainternmed.2020.5503.
    [55] KARUNAKARAN M M, WILLCOX C R, SALIM M, et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vγ9Vδ2 TCR and is essential for phosphoantigen sensing[J]. Immunity, 2020, 52(3): 487–498. e6. doi: 10.1016/j.immuni.2020.02.014.
    [56] PAYNE K K, MINE J A, BISWAS S, et al. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells[J]. Science, 2020, 369(6506): 942–949. doi: 10.1126/science.aay2767.
    [57] CANO C E, PASERO C, DE GASSART A, et al. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells[J]. Cell Reports, 2021, 36(2): 109359. doi: 10.1016/j.celrep.2021.109359.
    [58] VYBOROVA A, BERINGER D X, FASCI D, et al. γ9δ2T cell diversity and the receptor interface with tumor cells[J]. The Journal of Clinical Investigation, 2020, 130(9): 4637–4651. doi: 10.1172/jci132489.
  • 250796-附表.xlsx
    250796-附录.docx
  • 加载中
图(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-26
  • 修回日期:  2026-01-07
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-30

目录

    /

    返回文章
    返回