高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天基计算芯片:现状、趋势与关键技术

魏肖彤 许浩博 尹春笛 黄俊培 孙文昊 徐文浚 王颖 刘垚圻 孟范涛 闵丰 王梦迪 韩银和

魏肖彤, 许浩博, 尹春笛, 黄俊培, 孙文昊, 徐文浚, 王颖, 刘垚圻, 孟范涛, 闵丰, 王梦迪, 韩银和. 天基计算芯片:现状、趋势与关键技术[J]. 电子与信息学报. doi: 10.11999/JEIT250633
引用本文: 魏肖彤, 许浩博, 尹春笛, 黄俊培, 孙文昊, 徐文浚, 王颖, 刘垚圻, 孟范涛, 闵丰, 王梦迪, 韩银和. 天基计算芯片:现状、趋势与关键技术[J]. 电子与信息学报. doi: 10.11999/JEIT250633
WEI Xiaotong, XU Haobo, YIN Chundi, HUANG Junpei, SUN Wenhao, XU Wenjun, WANG Ying, LIU Yaoqi, MENG Fantao, MIN Feng, WANG Mengdi, HAN Yinhe. Space-based Computing Chips: Current Status, Trends and Key Technique[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250633
Citation: WEI Xiaotong, XU Haobo, YIN Chundi, HUANG Junpei, SUN Wenhao, XU Wenjun, WANG Ying, LIU Yaoqi, MENG Fantao, MIN Feng, WANG Mengdi, HAN Yinhe. Space-based Computing Chips: Current Status, Trends and Key Technique[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250633

天基计算芯片:现状、趋势与关键技术

doi: 10.11999/JEIT250633 cstr: 32379.14.JEIT250633
基金项目: 国家自然科学基金 (62025404, 62495104),北京市自然科学基金(L241013)
详细信息
    作者简介:

    魏肖彤:男,博士生,研究方向为计算机体系结构,芯片架构设计

    许浩博:男,副研究员,研究方向为计算机系统结构,专用芯片

    尹春笛:男,硕士生,研究方向为计算机体系结构,芯片设计

    黄俊培:男,博士生,研究方向为计算机体系结构,芯片架构设计

    孙文昊:男,硕士生,研究方向为计算机体系结构

    徐文浚:男,硕士生,研究方向为计算机体系结构,大模型推理优化

    王颖:男,研究员,研究方向为专用处理器体系结构,集成芯片系统

    刘垚圻:男,副研究员,研究方向为天基计算,通感算一体化

    孟范涛:男,主任设计师,研究方向为星上电子系统架构研究与星载计算机产品设计

    闵丰:男,助理研究员,研究方向为计算机系统结构,专用芯片

    王梦迪:女,助理研究员,研究方向为领域专用处理器架构设计、芯粒集成

    韩银和:男,研究员,研究方向为计算机体系结构和芯片,智能机器人,智能硬件,数据计算芯片和计算系统

    通讯作者:

    韩银和 yinhes@ict.ac.cn

  • 中图分类号: TP302.1

Space-based Computing Chips: Current Status, Trends and Key Technique

Funds: The National Natural Science Foundation of China (62025404, 62495104), Beijing Natural Science Foundation (L241013)
  • 摘要: 随着航天技术的快速发展,天基计算芯片作为空间信息系统的核心器件,承担着数据处理、任务控制和通信支持等关键功能,其重要性日益凸显。天基计算芯片不仅决定了空间任务的执行效率和可靠性,还在极端环境下为航天器的长期稳定运行提供保障。该文通过回顾天基计算芯片的发展历程,以探讨其未来发展方向。首先按照结构功能划分,从通用处理器(CPU)、现场可编程门阵列(FPGA)和专用芯片3方面对天基计算芯片的发展现状进行归纳和总结;然后深入分析其与地面芯片的主要区别,探讨针对辐射效应等空间环境挑战的关键容错技术,并从不同层面阐述已有的技术方法;最后论述了天基计算芯片未来的主要发展方向,即大算力、商用现货 (COTS)器件广泛应用、第五代精简指令集(RISC-V)架构。该文能够帮助读者了解该领域现状,掌握关键问题,并为后续的相关研究工作提供有价值的参考和启示。
  • 图  1  宇航通用处理器发展路线

    图  2  系统层不同容错架构

    表  1  天基芯片中通用处理器按指令架构分类

    指令集架构 处理器芯片 年份 国家/地区 核数/位宽 主频 功耗 工艺节点 抗辐射能力
    X86 Intel 80386SX 1988 美国 单核32位 20.0 MHz 1.0 W 1.50 μm 无硬化,需屏蔽防护
    AMD Steppe Eagle 2021 瑞典 四核64位 1.0 GHz 5.0–10.0 W 28 nm CTOS,未加固
    SPARC TSC695E 2001 美国 单核32位 25.0 MHz 1.0 W 0.5 μm TID~300 krads
    AT697F(LEON2) 2011 法国 单核32位 90.0 MHz 0.5 W 0.18 μm TID~100 krads, SEU加固
    BM3803 2011 中国 单核32位 8.0-12.0 MHz < 1.0 W 0.35 μm TID~50 krads级,TMR加固
    BM3823 2018 中国 单核32位 300.0 MHz 2.0 W 65 nm TMR加固, SEL≥75 (MeV·cm²)/mg
    GR740(LEON4FT) 2021 美国 四核32位 250.0 MHz 7.0 W 65 nm TID>100 krads, TMR加固
    ARM Phytium D2000 2020 中国 八核64位 2.3 GHz 25.0 W 14 nm CTOS,支持ECC校验
    VORAGO VA7230 2021 美国 双核64位 1.5 GHz < 10.0 W TID≥100 krads,
    SEL≥60 (MeV·cm²)/mg
    RISC-V NOEL-V 2020 瑞典 64/32位 存储器支持纠正4bits相邻错误
    HPSC (NASA) 2022 美国 十核64位 0.1-1.0 GHz < 15.0 W 7/14 nm TID~100 krads, SEL免疫80 MeV
    AS32S601 2024 中国 双核32位 180.0 MHz 135.0~275.0 mW SEU:10−5次/器件·天
    MIPS Loongson 3A5000 2015 中国 四核64位 2.5 GHz 30.0 W 12 nm CTOS,部分加固版本研制中
    下载: 导出CSV

    表  2  国内外太空FPGA产品特性

    FPGA型号制造商架构/工艺等效逻辑规模抗辐射能力特点及应用
    Xilinx Virtex-5QVAMD (美)SRAM FPGA /65 nm130万逻辑门TID >1 Mrads;
    SEL≥75 MeV·cm²/mg
    首款高性能抗辐射FPGA,
    用于图像处理
    XQRKU060SRAM FPGA /20 nm100万逻辑门TID >100 krads;
    SEE加固
    支持高速收发器,用于宽带通信载荷
    Microchip RTAX2000Microchip (美)Anti-fuse FPGA/150 nm200万逻辑门TID >1 Mrads抗熔丝工艺,配置不可重构,
    适用于长寿命任务控制逻辑
    Microchip RTG4Flash FPGA /28 nm15万逻辑单元TID >100 krads闪存工艺,无配置单粒子翻转,
    中高轨DSP和控制逻辑
    BRAVE NG-MediumNanoXplore (欧)SRAM FPGA /28 nm5万 LUT6TID >100 krads;
    SEL~ 68 MeV· cm²/mg
    用于ESA小卫星接口和控制逻辑
    JFM4VSX55RH复旦微 (中)SRAM FPGA1000万逻辑门TID 200 krads; SEL ~
    81 MeV·cm²/mg
    已在高分卫星上验证,
    用于图像处理
    下载: 导出CSV

    表  3  架构容错技术对比

    技术描述优缺点
    TCLS配置3个内核执行同一任务,进行周期级比对效率最高的纠错率,但最大的面积与功耗开销
    HMR构建锁步控制矩阵,实现TCLS、DCLS与独立模式快速切换面积、性能与可靠度之间均衡折中
    ODGR在每3个核间配置多数表决模块,通过软件配置启用或释放冗余模块额外硬件开销最小,依赖软件恢复周期长
    下载: 导出CSV

    表  4  电路容错技术对比

    技术描述应用场景
    ECC检测和纠正内存错误内存、处理器
    TMR3个模块投票,容忍单一故障航空航天
    BIST自我检测,切换冗余组件处理器、存储器
    下载: 导出CSV

    表  5  抗辐照工艺库技术

    技术描述辐射耐受性
    SOI绝缘基底,减少电荷收集10003000 krad
    宽带隙材料耐受深层缺陷高(具体数值待定)
    DICE锁存器冗余节点提高抗辐射能力500 krad+
    非易失性磁阻材料优化隧道结的材料和结构100 krad,降低写功耗
    下载: 导出CSV

    表  6  国内外太空项目使用COTS器件用例

    项目COTS器件功能描述
    SpaceX星链Broadcom BCM2711[88]处理器数据处理和任务控制
    NVIDIA Jetson TX2[89]GPU加速图像处理与深度学习处理
    COTS NAND Flash、DRAM存储芯片数据记录与存储,支持冗余设计与纠错机制
    ADI射频前端模块、TI射频控制器收发射频信号并进行处理
    电源管理芯片功率放大器[90]发射功率放大器
    NASA CubeSat[93]商用 S/UHF/X 波段射频通信模块实现地面通信、数据下行与实验验证
    银河航天低轨宽带通信卫星ARM架构MCU、Xilinx Kintex-7 抗辐射FPGA通过TMR设计保障星上逻辑稳定性,
    并搭配 ARM 架构 MCU 加强控制任务[91]
    长光卫星中遥感卫星COTS GPU/SoC实时图像处理与压缩,支持高分辨率遥感任务[92]
    下载: 导出CSV
  • [1] LENTARIS G, MARAGOS K, STRATAKOS I, et al. High-performance embedded computing in space: Evaluation of platforms for vision-based navigation[J]. Journal of Aerospace Information Systems, 2018, 15(4): 178–192. doi: 10.2514/1.I010555.
    [2] 冯颖, 刘忠健. 单粒子效应对飞行器的影响分析及防护技术[J]. 强度与环境, 2011, 38(1): 26–30. doi: 10.3969/j.issn.1006-3919.2011.01.005.

    FENG Ying and LIU Zhongjian. Single event effect analysis on the spacecraft and the technique designed in the protection[J]. Structure & Environment Engineering, 2011, 38(1): 26–30. doi: 10.3969/j.issn.1006-3919.2011.01.005.
    [3] GUERTIN S M, SOME R, NSENGIYUMVA P, et al. Radiation specification and testing of heterogenous microprocessor SOCs[C]. 2019 19th European Conference on Radiation and Its Effects on Components and Systems, Montpellier, France, 2022: 1–7. doi: 10.1109/RADECS47380.2019.9745708.
    [4] 孙宝三, 章宇兵, 岳兆娟, 等. 面向服务的天基计算技术架构研究[J]. 中国电子科学研究院学报, 2018, 13(4): 427–432. doi: 10.3969/j.issn.1673-5692.2018.04.012.

    SUN Baosan, ZHANG Yubing, YUE Zhaojuan, et al. Study on service-oriented architecture of space-borne computing[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(4): 427–432. doi: 10.3969/j.issn.1673-5692.2018.04.012.
    [5] XU Mengwei, ZHANG Li, LI Hongyu, et al. A satellite-born server design with massive tiny chips towards in-space computing[C]. 2022 IEEE International Conference on Satellite Computing, Shenzhen, China, 2022: 1–6. doi: 10.1109/Satellite55519.2022.00009.
    [6] 董珊. 星载遥感图像实时处理专用芯片的抗辐照电路设计[D]. [硕士论文], 北京理工大学, 2016.

    DONG Shan. The radiation-hardened circuit design of a Space-borne remote sensing image real-time processing chip[D]. [Master dissertation], Beijing Institute of Technology, 2016.
    [7] BAE Systems. BAE Systems RAD6000 datasheet[EB/OL]. https://www.digchip.com/datasheets/parts/datasheet/568/RAD6000-pdf.php, 2025.
    [8] BEDI R. Spacecraft on-board computing using rad-hard ARM MCUs[EB/OL]. https://www.edn.com/spacecraft-on-board-computing-using-rad-hard-arm-mcus/, 2025.
    [9] KELLER J. NOVI chooses VORAGO radiation-hardened microcontroller for space computer that will fly on SpaceX mission[EB/OL]. https://www.militaryaerospace.com/computers/article/55093107/vorago-technologies-radiation-hardened-microcontroller-space, 2025.
    [10] SHILOV A. Nvidia's Jetson AI board is ready to go to space[EB/OL]. https://www.tomshardware.com/news/nvidias-jetson-ai-board-is-ready-to-go-to-space, 2025.
    [11] Intel. Intel® Movidius™ Myriad™ X vision processing unit 4GB[EB/OL]. https://www.intel.com/content/www/us/en/products/sku/125926/intel-movidius-myriad-x-vision-processing-unit-4gb/specifications.html, 2025.
    [12] CRATERE A, GAGLIARDI L, SANCA G A, et al. On-board computer for CubeSats: State-of-the-art and future trends[J]. IEEE Access, 2024, 12: 99537–99569. doi: 10.1109/ACCESS.2024.3428388.
    [13] GARCÍA L P, FURANO G, GHIGLIONE M, et al. Advancements in onboard processing of synthetic aperture radar (SAR) data: Enhancing efficiency and real-time capabilities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 16625–16645. doi: 10.1109/JSTARS.2024.3406155.
    [14] HAMILTON D. Medical system design challenges for exploration class space missions[EB/OL]. https://marspapers.org/paper/Hamilton_2024.4_1.9contrib.pdf, 2025.
    [15] UNIBAP. SpaceCloud® iX5–106[EB/OL]. https://unibap.com/wp-content/uploads/2023/09/spacecloud-ix5-100-product-overview-v27.pdf, 2025.
    [16] ATMEL. Rad-hard 32-bit SPARC embedded processor, TSC695E[EB/OL]. https://pdf.dzsc.com/88889/26096.pdf, 2025.
    [17] ATMEL. Rad-hard 32 bit SPARC V8 processor, AT697F[EB/OL]. https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/doc7703.pdf, 2025.
    [18] SJÄLANDER M, HABINC S, and GAISLER J. LEON4: Fourth generation of the LEON processor[EB/OL]. https://sjalander.com/research/pdf/sjalander-dasia2009.pdf, 2025.
    [19] CAES. LEON and NOEL-V SoC architectures[EB/OL]. https://www.frontgrade.com/sites/default/files/documents/Position-Paper-LEON-NOELV-SoC-Architectures-2022-02-22.pdf, 2025.
    [20] HE Yating, JI Xiaoyan, ZHAO Rui, et al. A software reconfiguration method for CPU of satellite-board controller[C]. Proceedings of SPIE 13079, Third International Conference on Testing Technology and Automation Engineering, Xi’an, China, 2023: 130790P. doi: 10.1117/12.3015550.
    [21] 北京微电子技术研究所. 300MHz抗辐照SPARC CPU产品使用手册[EB/OL]. https://www.manuallib.com/download/6B25900E1D2FF9CE7479DEC5434FE780.pdf, 2025.

    Beijing Institute of Microelectronics Technology. User manual for 300MHz radiation-hardened SPARC CPU product[EB/OL]. https://www.manuallib.com/download/6B25900E1D2FF9CE7479DEC5434FE780.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [22] WHITTAKER A. Raspberry Pi Zero powers CubeSat space mission[EB/OL]. https://www.raspberrypi.com/news/raspberry-pi-zero-powers-cubesat-space-mission/, 2025.
    [23] Airbus. Defence and space: PureLine[EB/OL]. https://www.airbus.com/sites/g/files/jlcbta136/files/2024-12/Datasheet_SpE_PureLine_Amethyst_2022.pdf, 2025.
    [24] VORAGO. VA7230 edge computing microprocessor for space applications[EB/OL]. https://www.voragotech.com/va7230-edge-computing-microprocessor, 2025.
    [25] Phytium. 飞腾腾锐D2000处理器数据手册[EB/OL]. https://gitcode.com/Open-source-documentation-tutorial/fdcb3/blob/main/%E9%A3%9E%E8%85%BE%E8%85%BE%E9%94%90D2000%E5%A4%84%E7%90%86%E5%99%A8%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.

    Phytium. Data manual for Phytium Tengrui D2000 series processor[EB/OL]. https://gitcode.com/Open-source-documentation-tutorial/fdcb3/blob/main/%E9%A3%9E%E8%85%BE%E8%85%BE%E9%94%90D2000%E5%A4%84%E7%90%86%E5%99%A8%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [26] Frontgrade Gaisler. NOEL-V[EB/OL]. https://www.gaisler.com/products/noel-v, 2025.
    [27] NASA. NASA’s high performance spaceflight computer[EB/OL]. https://www.nasa.gov/wp-content/uploads/2024/07/hpsc-white-paper-tmg-26jun2024-final.pdf, 2025.
    [28] 国科安芯. MCU芯片-AS32S601数据手册[EB/OL]. https://ansilic.com/wp-content/uploads/2024/09/MCU%E8%8A%AF%E7%89%87-AS32S601%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.

    ANSILIC. MCU chip-AS32S601 data sheet[EB/OL]. https://ansilic.com/wp-content/uploads/2024/09/MCU%E8%8A%AF%E7%89%87-AS32S601%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [29] 胡伟武, 汪文祥, 吴瑞阳, 等. 龙芯指令系统架构技术[J]. 计算机研究与发展, 2023, 60(1): 2–16. doi: 10.7544/issn1000-1239.202220196.

    HU Weiwu, WANG Wenxiang, WU Ruiyang, et al. Loongson instruction set architecture technology[J]. Journal of Computer Research and Development, 2023, 60(1): 2–16. doi: 10.7544/issn1000-1239.202220196.
    [30] 国家航天局. “龙芯”上天 北斗有了“中国芯”[EB/OL]. https://www.cnsa.gov.cn/n6758824/n6759009/n6759043/n6759069/c6577136/content.html, 2025.

    National Space Administration. "Loongson" is launched into space, Beidou now has its own "Chinese core"[EB/OL]. https://www.cnsa.gov.cn/n6758824/n6759009/n6759043/n6759069/c6577136/content.html, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [31] 龙芯中科. 龙芯1F处理器数据手册[EB/OL]. https://www.docin.com/p-1975324773.html, 2025.

    Loongson Technology. Data sheet for Loongson 1F processor[EB/OL]. https://www.docin.com/p-1975324773.html, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
    [32] Wikipedia. Apollo guidance computer[EB/OL]. https://en.wikipedia.org/wiki/Apollo_Guidance_Computer, 2025.
    [33] Wikipedia. IBM RAD6000[EB/OL]. https://en.wikipedia.org/wiki/IBM_RAD6000, 2025.
    [34] ESA. LEON’s first flights[EB/OL]. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/LEON_s_first_flights, 2025.
    [35] ARM. ARM and VORAGO technologies take space electronics to new heights[EB/OL]. https://newsroom.arm.com/news/arm-and-vorago-technologies-take-space-electronics-to-new-heights, 2025.
    [36] ESA. OPS-SAT(Operations nanoSatellite)[EB/OL]. https://www.eoportal.org/satellite-missions/ops-sat#eop-quick-facts-section, 2025.
    [37] GARCÉS-SOCARRÁS L M, NIK A, ORTIZ F, et al. Artificial intelligence satellite telecommunication testbed using commercial off-the-shelf chipsets[EB/OL]. arXiv: 2405.18297, https://arxiv.org/abs/2405.18297, 2024. (查阅网上资料,未能确认本条文献修改是否正确,请确认).
    [38] LI Lin, ZHANG Shengbing, and WU Juan. Efficient object detection framework and hardware architecture for remote sensing images[J]. Remote Sensing, 2019, 11(20): 2376. doi: 10.3390/rs11202376.
    [39] GEIST A, BREWER C, DAVIS M, et al. SpaceCube v3.0 NASA next-generation high-performance processor for science applications[C]. 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2019: 158.
    [40] XILINX. VIRTEX-5QV FPGA FAMILY[EB/OL]. https://www.xilinx.com/publications/prod_mktg/virtex5qv-product-brief.pdf, 2025.
    [41] XILINX. XQR Space-grade Kintex™ UltraScale™ and space heritage[EB/OL]. https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/xilinx-space-solution-brief.pdf, 2025.
    [42] Actel. RTAX-S testing and reliability update[EB/OL]. https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/SupportingCollateral/rtaxs_rel_test_wp.pdf, 2025.
    [43] Microchip. RTG4TM radiation-tolerant FPGAs[EB/OL]. https://www.microchip.com/en-us/products/fpgas-and-plds/radiation-tolerant-fpgas/rtg4-radiation-tolerant-fpgas, 2025.
    [44] LEON V, STAMOULIAS I, LENTARIS G, et al. Development and testing on the European space-grade BRAVE FPGAs: Evaluation of NG-large using high-performance DSP benchmarks[J]. IEEE Access, 2021, 9: 131877–131892. doi: 10.1109/ACCESS.2021.3114502.
    [45] 俞军, 徐烈伟, 俞剑, 等. 高可靠亿门级FPGA芯片关键技术及产业化[Z]. 复旦大学, 2020.

    YU Jun, XU Liewei, YU Jian, et al. Key technologies and industrialization of high-reliability billion-gate FPGA chips[Z]. Fudan University, 2020. (查阅网上资料, 未找到对应的英文翻译, 请确认).
    [46] PERSYN S C, MCLELLAND M, EPPERLY N, et al. Evolution of digital signal processing based spacecraft computing solutions[C]. IEEE Aerospace Conference, Big Sky, USA, 2002: 4. doi: 10.1109/AERO.2002.1036902.
    [47] CORDIS. DSP for space applications[EB/OL]. https://cordis.europa.eu/project/id/262798/reporting, 2025.
    [48] ADAMS C, SPAIN A, PARKER J, et al. Towards an integrated GPU accelerated SoC as a flight computer for small satellites[C]. 2019 IEEE Aerospace Conference, Big Sky, USA, 2019: 1–7. doi: 10.1109/AERO.2019.8741765.
    [49] WANG Mi, ZHANG Zhiqi, ZHU Ying, et al. Embedded GPU implementation of sensor correction for on-board real-time stream computing of high-resolution optical satellite imagery[J]. Journal of Real-Time Image Processing, 2018, 15(3): 565–581. doi: 10.1007/s11554-017-0741-0.
    [50] ZHANG Zhiqi, WEI Lu, XIANG Shao, et al. Task-driven onboard real-time panchromatic multispectral fusion processing approach for high-resolution optical remote sensing satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 7636–7661. doi: 10.1109/JSTARS.2023.3305231.
    [51] KESUMA H, AHMADI-POUR S, JOSEPH A, et al. Artificial intelligence implementation on voice command and sensor anomaly detection for enhancing human habitation in space mission[C]. 2019 9th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2019: 579–584. doi: 10.1109/RAST.2019.8767447.
    [52] SABOGAL S, GEORGE A, and CRUM G. ReCoN: A reconfigurable CNN acceleration framework for hybrid semantic segmentation on hybrid SoCs for space applications[C]. 2019 IEEE Space Computing Conference, Pasadena, USA, 2019: 41–52. doi: 10.1109/SpaceComp.2019.00010.
    [53] 航宇微. 高性能嵌入式AI处理器Yulong810A简介[EB/OL]. https://www.myorbita.net/uploadfiles/2024/10/2024102316010919.pdf, 2025.

    Aero-Chips. Introduction to high-performance embedded AI processor Yulong810A[EB/OL]. https://www.myorbita.net/uploadfiles/2024/10/2024102316010919.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [54] MATSUO I B M, ZHAO Long, and LEE W J. A dual modular redundancy scheme for CPU–FPGA platform-based systems[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5621–5629. doi: 10.1109/TIA.2018.2859386.
    [55] SIM M T and ZHUANG Yanyan. A dual lockstep processor system-on-a-chip for fast error recovery in safety-critical applications[C]. IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore, 2020: 2231–2238. doi: 10.1109/IECON43393.2020.9255188.
    [56] FUCHS C M, CHOU Pai, WEN Xiaoqing, et al. A fault-tolerant MPSoC For CubeSats[C]. 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Noordwijk, Netherlands, 2019: 1–6. doi: 10.1109/DFT.2019.8875417.
    [57] CALDWELL D W and RENNELS D A. A minimalist fault-tolerant microcontroller design for embedded spacecraft computing[J]. The Journal of Supercomputing, 2000, 16(1/2): 7–25. doi: 10.1023/A:1008142728784.
    [58] GEIST A, BREWER C, DAVIS M, et al. SpaceCube v3.0 NASA next-generation high-performance processor for science applications[C]. 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2019.
    [59] HARIKRISHNAN P, KARRAS K, CRUZ N, et al. SpaceWire based reconfiguration and redundancy management of COTS based highly integrated onboard computer[C]. 2023 European Data Handling & Data Processing Conference, Juan Les Pins, France, 2023: 1–6. doi: 10.23919/EDHPC59100.2023.10396158.
    [60] PENG Qiao, WAN Xiaoguo, and ZHANG Jiliang. FOSA: A highly fault-tolerant operating system architecture[C]. 2024 IEEE International Test Conference in Asia, Changsha, China, 2024: 1–6. doi: 10.1109/ITC-Asia62534.2024.10661344.
    [61] 张吉良, 柴先平, 王爽, 等. 一种软错误防护方法、装置、设备及存储介质[P]. 中国, CN202310715223.5, 2023.

    ZHANG Jiliang, CHAI Xianping, WANG Shuang, et al. Soft error protection method and device, equipment and storage medium[P]. CN, CN202310715223.5, 2023.
    [62] FUCHS C M, STEFANOV T P, MURILLO N M, et al. Bringing fault-tolerant Gigahertz-computing to space: A multi-stage software-side fault-tolerance approach for miniaturized spacecraft[C]. 2017 IEEE 26th Asian Test Symposium, Taipei, China, 2017: 100–107. doi: 10.1109/ATS.2017.30.
    [63] ROGENMOSER M, WIESE P, FORLIN B E, et al. Trikarenos: Design and experimental characterization of a fault-tolerant 28-nm RISC-V-based SoC[J]. IEEE Transactions on Nuclear Science, 2025, 72(8): 2783–2792. doi: 10.1109/TNS.2025.3564739.
    [64] ROGENMOSER M, TORTORELLA Y, ROSSI D, et al. Hybrid modular redundancy: Exploring modular redundancy approaches in RISC-V multi-core computing clusters for reliable processing in space[J]. ACM Transactions on Cyber-Physical Systems, 2025, 9(1): 8. doi: 10.1145/3635161.
    [65] ROGENMOSER M, WISTOFF N, VOGEL P, et al. On-demand redundancy grouping: Selectable soft-error tolerance for a multicore cluster[C]. 2022 IEEE Computer Society Annual Symposium on VLSI, Nicosia, Cyprus, 2022: 398–401. doi: 10.1109/ISVLSI54635.2022.00089.
    [66] DÖRFLINGER A, Guan Yejun, MICHALIK S, et al. ECC memory for fault tolerant RISC-V processors[C]. 33rd International Conference on Architecture of Computing Systems, Aachen, Germany, 2020: 44–55. doi: 10.1007/978-3-030-52794-5_4.
    [67] FIFIELD J A and STAPPER C H. High-speed on-chip ECC for synergistic fault-tolerance memory chips[J]. IEEE Journal of Solid-State Circuits, 1991, 26(10): 1449–1452. doi: 10.1109/4.90100.
    [68] LEROUX P. Radiation tolerant electronics[J]. Electronics, 2019, 8(7): 730. doi: 10.3390/electronics8070730.
    [69] NICOLAIDIS M. Design for soft error mitigation[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405–418. doi: 10.1109/TDMR.2005.855790.
    [70] BAUMANN R C. Radiation-induced soft errors in advanced semiconductor technologies[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 305–316. doi: 10.1109/TDMR.2005.853449.
    [71] SLAYMAN C W. Cache and memory error detection, correction, and reduction techniques for terrestrial servers and workstations[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 397–404. doi: 10.1109/TDMR.2005.856487.
    [72] LU Zhaojun, ZHAO Qi, CHEN Qidong, et al. A survey on fault-tolerance methods for SRAM-based FPGAs in radiation environments[C]. 2023 IEEE 32nd Asian Test Symposium, Beijing, China, 2023: 1–6. doi: 10.1109/ATS59501.2023.10318028.
    [73] SCHWANK J R, FERLET-CAVROIS V, SHANEYFELT M R, et al. Radiation effects in SOI technologies[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 522–538. doi: 10.1109/TNS.2003.812930.
    [74] LIU Jia, LI Yao, ZHANG Ruitao, et al. Development of a radiation-hardened standard cell library for 65nm CMOS technology[C]. 2016 China Semiconductor Technology International Conference, Shanghai, China, 2016: 1–3. doi: 10.1109/CSTIC.2016.7464080.
    [75] GREESHMA N and JAMUNA S. Design and analysis of radiation hardened by design non-volatile RAM for space applications[J]. International Journal of Scientific and Research Publications, 2023, 13(6): 397–409. doi: 10.29322/IJSRP.13.06.2023.p13848.
    [76] LEYVA-MAYORGA I, MARTINEZ-GOST M, MORETTI M, et al. Satellite edge computing for real-time and very-high resolution earth observation[J]. IEEE Transactions on Communications, 2023, 71(10): 6180–6194. doi: 10.1109/TCOMM.2023.3296584.
    [77] WANG Yixin, QIU Xiaolan, and WEN Xuejiao. High-resolution SAR imaging characteristics for multiple scattering of rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 9974–9988. doi: 10.1109/JSTARS. 2024.3382038. doi: 10.1109/JSTARS.2024.3382038. doi: 10.1109/JSTARS.2024.3382038.doi:10.1109/JSTARS.2024.3382038.
    [78] LIU Haoting. Autonomous navigation for mars exploration[M]. PEZZELLA G and VIVIANI A. Mars Exploration - A Step Forward. IntechOpen, 2020. doi: 10.5772/intechopen.92093.(查阅网上资料,未找到出版地信息,请补充).
    [79] ZHANG Qinyu, XU Liang, HUANG Jianhao, et al. Distributed satellite information networks: Architecture, enabling technologies, and trends[J]. Science China Information Sciences, 2025, 68(8): 190301. doi: 10.1007/s11432-024-4408-1.
    [80] Advanced Cooling Technologies. VME/VPX card frames[EB/OL]. https://www.1-act.com/thermal-solutions/embedded-computing/vme-vpx/, 2025.
    [81] 薄鹏, 汪悦. 面向航天器型号的COTS元器件选用策略[J]. 航天器环境工程, 2023, 40(4): 430–436. doi: 10.12126/see.2023102.

    BAO Peng and WANG Yue. Selection strategy of COTS components for spacecraft[J]. Spacecraft Environment Engineering, 2023, 40(4): 430–436. doi: 10.12126/see.2023102.
    [82] 张泽明, 张楠. 航天任务中宇航级和COTS元器件的比较和选择[J]. 环境技术, 2023, 41(7): 75–79. doi: 10.3969/j.issn.1004-7204.2023.07.016.

    ZHANG Zeming and ZHANG Nan. Comparison and selection of space-grade and COTS components in space missions[J]. Environmental Technology, 2023, 41(7): 75–79. doi: 10.3969/j.issn.1004-7204.2023.07.016.
    [83] 侯小宇. 符合我国航空工业发展现状的COTS IP适航要求研究与探索[J]. 民航学报, 2022, 6(4): 82–88,95. doi: 10.3969/j.issn.2096-4994.2022.04.019.

    HOU Xiaoyu. Research on and exploration of COTS IP airworthiness requirements for China’s aviation industry[J]. Journal of Civil Aviation, 2022, 6(4): 82–88,95. doi: 10.3969/j.issn.2096-4994.2022.04.019.
    [84] 姜盛鑫, 韩天龙, 施帆, 等. 航天COTS产品标准化发展的透视与浅析[J]. 航天标准化, 2022(1): 36–39,49. doi: 10.19314/j.cnki.1009-234x.2022.01.005.

    JIANG Shengxin, HAN Tianlong, SHI Fan, et al. Perspective and analysis of the standardization development of COTS for space[J]. Aerospace Standardization, 2022(1): 36–39,49. doi: 10.19314/j.cnki.1009-234x.2022.01.005.
    [85] NASA. Commercial orbital transportation services: A new era in spaceflight[EB/OL]. https://www.nasa.gov/wp-content/uploads/2016/08/sp-2014-617.pdf, 2025.
    [86] DOUGLAS S, MAJEWICZ P. Enabling COTS EEEE parts for NASA missions[EB/OL]. https://ntrs.nasa.gov/api/citations/20250001580/downloads/MRQW_20250001580_v2.pdf, 2025.
    [87] WEIGAND R. RISC-V: A rising star in space[EB/OL]. http://microelectronics.esa.int/papers/PresentationSummit-EUR-RISC-V-RisingStarInSpace-2023-06-08.pdf, 2025.
    [88] Raspberry Pi. Raspberry Pi processors[EB/OL]. https://www.raspberrypi.com/documentation/computers/processors.html, 2025.
    [89] NVIDIA. Jetson TX2 module[EB/OL]. https://developer.nvidia.com/embedded/jetson-tx2, 2025.
    [90] RAMOS R. New tech Tuesdays: Starlink: The satellite-based internet service by SpaceX[EB/OL]. https://my.mouser.com/blog/new-tech-starlink-satellite-based-internet, 2025.
    [91] 安信证券. 航天产业研究: 卫星互联网蓄势待发[EB/OL]. https://file.iyanbao.com/pdf/d9d90-e3cc170f-bd84-4f31-8692-a4499289d9bb.pdf, 2025.

    Essence Securities. Aerospace industry research: Satellite internet is ready to take off[EB/OL]. https://file.iyanbao.com/pdf/d9d90-e3cc170f-bd84-4f31-8692-a4499289d9bb.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
    [92] 星测未来. 高性能计算助力卫星智能化[EB/OL]. https://mp.weixin.qq.com/s/mbQT4VkcI-i7iUJysnYXJw, 2025.

    StarDetect. High-performance computing powers satellite intelligence[EB/OL]. https://mp.weixin.qq.com/s/mbQT4VkcI-i7iUJysnYXJw, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
    [93] VASKA C, et al. The Cubesat communication platform (CCP) – mission overview and ConOps[C]. The 16th International Conference on Space Operations 2021, 2021. (查阅网上资料, 未找到本条文献信息, 请确认).
    [94] FURANO G, TAVOULARIS A, and ROVATTI M. AI in space: Applications examples and challenges[C]. 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Frascati, Italy, 2020: 1–6. doi: 10.1109/DFT50435.2020.9250908.
    [95] MALONE S, SAENZ P, and PHELAN P. RISC-V processors for spaceflight embedded platforms[C]. 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–11. doi: 10.1109/AERO55745.2023.10115850.
    [96] WILSON C. SpaceCube v3.0 mini[EB/OL]. https://ntrs.nasa.gov/api/citations/20190027308/downloads/20190027308.pdf, 2025.
    [97] 香港航天科技集团. 香港航天科技与中国科学院上海微系统与信息技术研究所合作[EB/OL]. https://www.prnasia.com/story/332577-1.shtml, 2025.

    Hong Kong Aerospace Technology Group. Hong Kong aerospace technology collaborates with the Shanghai Institute of Microsystems and information technology, Chinese Academy of Sciences[EB/OL]. https://ntrs.nasa.gov/api/citations/20190027308/downloads/20190027308.pdf, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  23
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-04
  • 修回日期:  2025-09-05
  • 网络出版日期:  2025-09-17

目录

    /

    返回文章
    返回