高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合编码校验特性的高效ORBGRAND译码器设计

雷升 梁展华 田静 周杨灿

雷升, 梁展华, 田静, 周杨灿. 融合编码校验特性的高效ORBGRAND译码器设计[J]. 电子与信息学报. doi: 10.11999/JEIT250501
引用本文: 雷升, 梁展华, 田静, 周杨灿. 融合编码校验特性的高效ORBGRAND译码器设计[J]. 电子与信息学报. doi: 10.11999/JEIT250501
LEI Sheng, LIANG Zhanhua, TIAN Jing, ZHOU Yangcan. Design of Efficient ORBGRAND Decoders with Parity-Check Constraint[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250501
Citation: LEI Sheng, LIANG Zhanhua, TIAN Jing, ZHOU Yangcan. Design of Efficient ORBGRAND Decoders with Parity-Check Constraint[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250501

融合编码校验特性的高效ORBGRAND译码器设计

doi: 10.11999/JEIT250501 cstr: 32379.14.JEIT250501
基金项目: 国家密码科学基金(2025NCSF02002),江苏省基础研究计划重点项目(BK20243038),中国科学技术协会青年人才托举工程项目(2023QNRC001)
详细信息
    作者简介:

    雷升:男,硕士生,研究方向为集成电路设计

    梁展华:男,硕士生,研究方向为集成电路设计

    田静:女,助理教授,研究方向为集成电路优化设计、后量子密码学、AI同态安全

    周杨灿:男,博士后,研究方向为信号与信息处理的算法与芯片实现

    通讯作者:

    周杨灿 yczhou@smail.nju.edu.cn

  • 中图分类号: TN47

Design of Efficient ORBGRAND Decoders with Parity-Check Constraint

Funds: The National Cryptography Science Foundation of China (2025NCSF02002), The Natural Science Foundation of Jiangsu Province of China (BK20243038), The Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2023QNRC001)
  • 摘要: 有序可靠位猜测随机加性噪声译码(ORBGRAND)凭借其平均时延短、通用等优点受到广泛关注。然而,目前ORBGRAND算法和硬件实现仍然面临挑战,如最差时延长、吞吐率受限等。为了改善上述问题,该文提出将特殊的编码校验关系融入现有串行和展开架构的ORBGRAND译码器以提升硬件效率。针对串行架构,利用全局奇偶校验比特控制逻辑重量和汉明重量(HW)的迭代过程,跳过部分无效错误模式的生成与校验过程;针对展开架构,根据全局奇偶校验比特将错误模式按照HW奇偶性进行分类存储与测试。采用现有文献中的归一化方法处理后的硬件实现结果表明,所提优化的串行架构译码器吞吐率提升了80.9%,面积效率提升了48.1%;所提优化的展开架构译码器吞吐率提升了584%,面积效率提升了1223%。
  • 图  1  融合校验关系的ORBGRAND算法流程

    图  2  融合校验关系的ORBGRAND串行架构

    图  3  串行架构的校验模块和权重生成模块结构示意图

    图  4  错误模式查询次数与$ {E}_{\mathrm{b}}/{N}_{0} $,误帧率FER与$ {E}_{\mathrm{b}}/{N}_{0} $关系的仿真结果

    图  5  融合校验关系的ORBGRAND展开架构

    表  1  本文所提串行架构译码器综合结果及其与文献[13]的比较

    本工作串行
    架构
    现有串行
    架构[13]
    实现类型 综合 综合
    测试的编码方案 CA-Polar CA-Polar
    码率 240/256 240/256
    工艺 (nm) 28 40
    供电电压 (V) 0.9 1.0
    频率 (MHz) 400 180
    延迟 (ns) 7.25 18.75
    面积 (mm2) 0.18 0.3
    吞吐率 (Gb/s) 33.1 12.8
    面积效率 (Gbps/mm2) 183.9 42.6
    目标 FER 10–7 10–7
    面积@(28nm, 0.9V) (mm2) 0.18 0.15
    频率@(28nm, 0.9V) (MHz) 400 257
    延迟@(28nm, 0.9V) (ns) 7.25 13.11
    吞吐率@(28nm, 0.9V) (Gb/s) 33.1 18.3
    面积效率@(28nm, 0.9V) (Gbps/mm2) 183.9 124.2
    注:归一化:面积:$ {S}^{2} $,频率:$ 1/S $,延迟:$ S $,吞吐率:$ 1/S $,面积效率:$ 1/{S}^{3} $,$ {S} $ 为目标工艺/当前工艺。
    下载: 导出CSV

    表  2  本文所提展开架构译码器综合结果及其与文献[16]的比较

    本工作展开架构 现有展开架构[16]
    A B C D
    实现类型 综合 综合 综合 综合
    测试的编码方案 CA-Polar CA-Polar CA-Polar CA-Polar
    码率 105/128 105/128 105/128 105/128
    工艺 (nm) 28 28 7 7
    供电电压 (V) 0.9 0.9 0.5 0.5
    单阶段存储数/单阶段校验数 1024/512 512/256 512/512 256/256
    译码周期 10 18 18 34
    频率 (MHz) 616 1053 616 701
    延迟 (cc)-(ns) 17-25.49 25-22.75 25-40.58 41-58.49
    面积 (mm2) 24.51 27.82 3.38 3.70
    吞吐率 (Gb/s) 64.68 110.57 64.68 73.61
    面积效率 (Gbps/mm2) 2.64 3.97 19.13 19.89
    面积@(28nm, 0.9V) (mm2) 24.51 27.82 54.08 59.20
    频率@(28nm, 0.9V) (MHz) 616 1053 154 175
    延迟@(28nm, 0.9V) (ns) 25.49 22.75 162.32 233.96
    吞吐率@(28nm, 0.9V) (Gb/s) 64.68 110.57 16.17 18.40
    面积效率@(28nm, 0.9V) (Gbps/mm2) 2.64 3.97 0.30 0.31
    注:归一化:面积:$ {S}^{2} $,频率:$ 1/S $,延迟:$ S $,吞吐率:$ 1/S $,面积效率:$ 1/{S}^{3} $,$ {S} $为目标工艺/当前工艺。
    下载: 导出CSV
  • [1] DUFFY K R, LI Jiange, and MÉDARD M. Capacity-achieving guessing random additive noise decoding[J]. IEEE Transactions on Information Theory, 2019, 65(7): 4023–4040. doi: 10.1109/TIT.2019.2896110.
    [2] DUFFY K R, YUAN Peihong, GRIFFIN J, et al. Soft-output guessing codeword decoding[J]. IEEE Communications Letters, 2025, 29(2): 328–332. doi: 10.1109/lcomm.2024.3516486.
    [3] MILLWARD J A, DUFFY K R, RANGASWAMY M, et al. Enhancing guessing random additive noise decoding using channel estimation[C]. 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2024: 676–680. doi: 10.1109/SPAWC60668.2024.10694171.
    [4] WAN Li and ZHANG Wenyi. Approaching maximum likelihood decoding performance via reshuffling ORBGRAND[C]. 2024 IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 2024: 31–36. doi: 10.1109/ISIT57864.2024.10619402.
    [5] YUAN Peihong, MÉDARD M, GALLIGAN K, et al. Soft-output (SO) GRAND and iterative decoding to outperform LDPC codes[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 3386–3399. doi: 10.1109/twc.2025.3530880.
    [6] BLANC L D, HERRMANN V, REN Yuqing, et al. A GRANDAB decoder with 8.48 gbps worst-case throughput in 65nm CMOS[C]. 2024 IEEE European Solid-State Electronics Research Conference (ESSERC), Bruges, Belgium, 2024: 685–688. doi: 10.1109/ESSERC62670.2024.10719587.
    [7] DUFFY K R and MÉDARD M. Guessing random additive noise decoding with soft detection symbol reliability information - SGRAND[C]. 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 2019: 480–484. doi: 10.1109/ISIT.2019.8849297.
    [8] DUFFY K R, MÉDARD M, and AN Wei. Guessing random additive noise decoding with symbol reliability information (SRGRAND)[J]. IEEE Transactions on Communications, 2022, 70(1): 3–18. doi: 10.1109/TCOMM.2021.3114315.
    [9] DUFFY K R, AN Wei, and MÉDARD M. Ordered reliability bits guessing random additive noise decoding[J]. IEEE Transactions on Signal Processing, 2022, 70: 4528–4542. doi: 10.1109/TSP.2022.3203251.
    [10] CONDO C, BIOGLIO V, and LAND I. High-performance low-complexity error pattern generation for ORBGRAND decoding[C]. 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 2021: 1–6. doi: 10.1109/GCWkshps52748.2021.9682165.
    [11] JI Chao, YOU Xiaohu, ZHANG Chuan, et al. Efficient ORBGRAND implementation with parallel noise sequence generation[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(2): 435–448. doi: 10.1109/TVLSI.2024.3466474.
    [12] ABBAS S M, JALALEDDINE M, TSUI C Y, et al. Improved step-GRAND: Low-latency soft-input guessing random additive noise decoding[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2025, 33(4): 1028–1041. doi: 10.1109/tvlsi.2025.3529637.
    [13] RIAZ A, YASAR A, ERCAN F, et al. A sub-0.8-pJ/bit universal soft-detection decoder using ORBGRAND[J]. IEEE Journal of Solid-State Circuits, 2025, 60(7): 2645–2659. doi: 10.1109/JSSC.2024.3502240.
    [14] ABBAS S M, TONNELLIER T, ERCAN F, et al. High-throughput and energy-efficient VLSI architecture for ordered reliability bits GRAND[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(6): 681–693. doi: 10.1109/TVLSI.2022.3153605.
    [15] XIAO Jiayu, ZHOU Yangcan, SONG Suwen, et al. A low-latency and area-efficient ORBGRAND decoder for polar codes[C]. 2023 4th Information Communication Technologies Conference (ICTC), Nanjing, China, 2023: 10–15. doi: 10.1109/ICTC57116.2023.10154861.
    [16] CONDO C. A fixed latency ORBGRAND decoder architecture with LUT-aided error-pattern scheduling[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(5): 2203–2211. doi: 10.1109/tcsi.2022.3150583.
    [17] ABBAS S M, JALALEDDINE M, and GROSS W J. List-GRAND: A practical way to achieve maximum likelihood decoding[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(1): 43–54. doi: 10.1109/tvlsi.2022.3223692.
    [18] GEISELHART M, KRIEG F, CLAUSIUS J, et al. 6G: A welcome chance to unify channel coding?[J]. IEEE BITS the Information Theory Magazine, 2023, 3(1): 67–80. doi: 10.1109/MBITS.2023.3322974.
    [19] TATARIA H, SHAFI M, MOLISCH A F, et al. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[J]. Proceedings of the IEEE, 2021, 109(7): 1166–1199. doi: 10.1109/JPROC.2021.3061701.
    [20] GE Yingmeng, JI Zhenhao, HUANG Yongming, et al. Automatic hybrid-precision quantization for MIMO detectors[J]. IEEE Transactions on Signal Processing, 2023, 71: 1039–1052. doi: 10.1109/tsp.2023.3240511.
    [21] GIARD P, BALATSOUKAS-STIMMING A, MULLER T C, et al. PolarBear: A 28-nm FD-SOI ASIC for decoding of polar codes[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(4): 616–629. doi: 10.1109/jetcas.2017.2745704.
    [22] HU Shuai, HAN Kaining, WANG Fujie, et al. Hybrid stochastic LDPC decoder with fully correlated stochastic computation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(9): 3643–3654. doi: 10.1109/tcsi.2022.3179282.
    [23] PENG Guiqiang, LIU Leibo, ZHOU Sheng, et al. A 1.58 Gbps/W 0.40 Gbps/mm2 ASIC Implementation of MMSE Detection for 128×864 -QAM massive MIMO in 65 nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(5): 1717–1730. doi: 10.1109/tcsi.2017.2754282.
    [24] ZHANG Qichen, CHEN Yun, LI Shixian, et al. A high-performance stochastic LDPC decoder architecture designed via correlation analysis[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(12): 5429–5442. doi: 10.1109/tcsi.2020.3003457.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  29
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-09-14
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回