高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于概率模型的集成电路寄生参数提取算法

陈家瑞 吴昭怡 游勇杰 陈忆鹭 林智锋

陈家瑞, 吴昭怡, 游勇杰, 陈忆鹭, 林智锋. 基于概率模型的集成电路寄生参数提取算法[J]. 电子与信息学报. doi: 10.11999/JEIT250458
引用本文: 陈家瑞, 吴昭怡, 游勇杰, 陈忆鹭, 林智锋. 基于概率模型的集成电路寄生参数提取算法[J]. 电子与信息学报. doi: 10.11999/JEIT250458
CHEN Jiarui, WU Zhaoyi, YOU Yongjie, CHEN Yilu, LIN Zhifeng. A Probability-Based Parasitic Extraction Algorithm for Global-Routed VLSI Designs[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250458
Citation: CHEN Jiarui, WU Zhaoyi, YOU Yongjie, CHEN Yilu, LIN Zhifeng. A Probability-Based Parasitic Extraction Algorithm for Global-Routed VLSI Designs[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250458

基于概率模型的集成电路寄生参数提取算法

doi: 10.11999/JEIT250458 cstr: 32379.14.JEIT250458
基金项目: 福建省自然科学基金(2024J01363),国家重点研发计划课题(2021YFA1003602)
详细信息
    作者简介:

    陈家瑞:男,副教授,研究方向为集成电路设计自动化

    吴昭怡:女,硕士生,研究方向为集成电路设计自动化

    游勇杰:男,高级工程师,研究方向为集成电路设计自动化

    陈忆鹭:男,讲师,研究方向为集成电路设计自动化

    林智锋:男,副研究员,研究方向为集成电路设计自动化

    通讯作者:

    林智锋 linzhifeng@fzu.edu.cn

  • 中图分类号: TN402; TP291.41

A Probability-Based Parasitic Extraction Algorithm for Global-Routed VLSI Designs

Funds: The Natural Science Foundation of Fujian Province (2024J01363), The National Key Research and Development Program of China (2021YFA1003602)
  • 摘要: 随着特征尺寸的不断缩小,寄生参数提取对于整体电路性能变得越来越重要。为了实现更快的设计收敛,该文提出一种基于概率的寄生参数提取算法,用于全局布线后的时序分析。通过一种新颖的基于网格的数据表示方法,该文开发了一种分区策略,以有效地捕获耦合导线段;然后构建了一个基于概率的平均模型,用于加速导线间距的计算;最后提出一种耦合效应感知的提取方法,以计算出精确的互连寄生参数。该文使用28 nm和7 nm技术节点下的工业电路评估所提出的算法。实验结果表明,所生成的寄生参数与领先的商业工具 Innovus具有强相关性,并且运行时间比Innovus快了21.6%。
  • 图  1  基于概率模型的寄生参数提取算法流程

    图  2  基于分区的耦合段识别策略的说明

    图  3  基于网格的交叉段识别示例

    图  4  基于概率的导线间距计算示例

    图  5  双线性插值的图示

    图  6  基准HP_DEC_TOP的误差直方图。

    1  耦合导线段识别算法

     输入:导线$w$及其相邻信号线集合${\text{SR}}$
     输出:划分后的导线段集合$S$,包含耦合导线段的数量
     (1) ${x_l}$,${x_r}$为$w$的起始和结束坐标
     (2) $L$、$R$为${\text{SR}}$中信号线的起始和结束坐标集合
     (3) $ U = L \cup R \cup {x_l} \cup {x_r} $
     (4) ${\text{start}} = {x_l}$
     (5) 将$L$, $R$, $U$按升序排序
     (6) ${\text{seg\_num = getInitialSegNum()}}$
     (7) while ${\text{start}} \ne \varnothing $ do
     (8)  ${\text{end}} = U$中${\text{start}}$的下一个元素
     (9)  $S = S \cup \{ {\text{end,end-start,seg\_num}}\} $
     (10) ${\text{start}} = {\text{end}}$
     (11) if ${\text{start}} = = {x_r}$ then
     (12)   break
     (13) else if ${\text{start}} \in L$ then
     (14)  (${\text{seg\_num + + }}$
     (15)  else
     (16)  ($ \mathrm{s}\mathrm{e}\mathrm{g}\_\mathrm{n}\mathrm{u}\mathrm{m}-- $
     (17) end while
     (18) return $S$
    下载: 导出CSV

    2  基于导线和通孔的RC树构造

     输入:导线集合$W$和通孔集合$V$
     输出:构造的RC树的节点集合$N$和边集合$E$
     (1) $ {N}={\varnothing },\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }{E}={\varnothing } $
     (2) for $\{ {x_l},{y_b},{x_r},{y_t},{\text{layer}}\} $ in $W$ do
     (3)  ${\text{nod}}{{\text{e}}_1} = {\text{get\_or\_create}}({x_l},{y_b},{\text{layer}})$
     (4)  ${\text{nod}}{{\text{e}}_2} = {\text{get\_or\_create}}({x_r},{y_t},{\text{layer}})$
     (5)  $ {\text{edge}} = {\text{create}}\_{\text{edge}}({\text{nod}}{{\text{e}}_1}{\text{,nod}}{{\text{e}}_2}) $
     (6)  $E = E \cup \{ {\text{edge}}\} $
     (7)  $N = N \cup \{ {\text{nod}}{{\text{e}}_1},{\text{nod}}{{\text{e}}_2}\} $
     (8)end for
     (9)for $\{ x,y,{\text{lower\_layer}}\} $ in $V$ do
     (10) ${\text{vi}}{{\text{a}}_1} = {\text{get\_or\_create}}(x,y,{\text{lower\_layer}})$
     (11) $ {\text{vi}}{{\text{a}}_2} = {\text{get\_or\_create}}(x,y,{\text{lower\_layer + 1}}) $
     (12) $ {\text{edge}} = {\text{create}}\_{\text{edge}}({\text{vi}}{{\text{a}}_1}{\text{,vi}}{{\text{a}}_2}) $
     (13) $E = E \cup \{ {\text{edge}}\} $
     (14) $N = N \cup \{ {\text{vi}}{{\text{a}}_1},{\text{vi}}{{\text{a}}_2}\} $
     (15) end for
     (16) 检查RC树的连通性
     (17) return $N$, $E$
    下载: 导出CSV

    表  1  电容、电阻和运行时间与 Innovus 的比较

    BenchmarkStatisticCapacitance_error(%)Resistance_error(%)RT(s)
    Tech.(nm)#Stds#NetsMeanStd_devMeanStd_dev本文Innovus
    HP_DEC_TOP2816576901672977–0.191.32–0.151.74241316
    CPU_M0_WRAP281021481952813–0.252.370.392.81136179
    HPP_AHP28505021518611–0.094.950.182.578099
    HP_TOP_M1_VI2815120261612055–0.153.810.011.86256296
    M0_TPP28145785616106940.811.76–0.431.57227288
    MEDIA_SYSTEM28105031711169390.434.62–0.291.74158189
    MAQ_VI7254613816875081.722.98–0.522.73281317
    ROCKET_SUBSYS7204885718244394.133.070.474.36260319
    RSFEC_fsu7215731519842821.524.441.054.50321363
    MEDIA_iol7105848210236580.981.86–0.424.19151190
    HP_WRAP7214897722978121.152.34–0.261.79302392
    RX_SYSTEM_WRAP7484397347976173.594.900.743.41793847
    Average1.153.090.082.631.0001.216
    下载: 导出CSV

    表  2  Innovus没考虑NDR时与文章所提方法的对比

    BenchmarkStatisticCapacitance_error(%)
    Technology(nm)#Stds#NetsMeanStd_dev
    ROCKET_SUBSYS7204885718244391.352.41
    RX_SYSTEM_WRAP7484397347976171.183.72
    下载: 导出CSV
  • [1] SHI Hanyu and HE Qing. VLSI parasitic capacitance extraction based on pattern matching using modified machine learning methods[C]. The 10th International Conference on Computer and Communications (ICCC), Chengdu, China, 2024: 92–99. doi: 10.1109/ICCC62609.2024.10942273.
    [2] LIU Lihao, YANG Fan, SHANG Li, et al. GNN-cap: Chip-scale interconnect capacitance extraction using graph neural network[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(4): 1206–1217. doi: 10.1109/TCAD.2023.3331942.
    [3] PATIDAR S and BODADE R M. Evaluation trends and development in integrated circuit parasitic extraction[C]. 2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 2024: 1–7. doi: 10.1109/SCEECS61402.2024.10482256.
    [4] ZEMANIAN A H. A finite-difference procedure for the exterior problem inherent in capacitance computations for VLSI interconnections[J]. IEEE Transactions on Electron Devices, 1988, 35(7): 985–992. doi: 10.1109/16.3355.
    [5] SUMANT P S and CANGELLARIS A C. Algebraic multigrid Laplace solver for the extraction of capacitances of conductors in multi-layer dielectrics[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2007, 20(5): 253–269. doi: 10.1002/jnm.650.
    [6] YU Wenjian, SHEN Shan, YANG Dingcheng, et al. Deep learning inspired capacitance extraction techniques[C]. The 30th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 2025: 106–112. doi: 10.1145/3658617.3703148.
    [7] WU Shengkun, XIE Biwei, and LI Xingquan. An adaptive partition strategy of Galerkin boundary element method for capacitance extraction[C]. The 28th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 2023: 541–546. doi: 10.1145/3566097.3567903.
    [8] YU Wenjian, WANG Zeyi, and GU Jiangchun. Fast capacitance extraction of actual 3-D VLSI interconnects using quasi-multiple medium accelerated BEM[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(1): 109–119. doi: 10.1109/TMTT.2002.806923.
    [9] CHAI Wenwen, JIAO Dan, and KOH C K. A direct integral-equation solver of linear complexity for large-scale 3D capacitance and impedance extraction[C]. The 46th Annual Design Automation Conference, San Francisco, USA, 2009: 752–757. doi: 10.1145/1629911.1630107.
    [10] SHI Weiping, LIU Jianguo, KAKANI N, et al. A fast hierarchical algorithm for 3-D capacitance extraction[C]. The 35th Annual Design Automation Conference, San Francisco, USA, 1998: 212–217. doi: 10.1145/277044.277101.
    [11] YANG Ming and YU Wenjian. Floating random walk capacitance solver tackling conformal dielectric with on-the-fly sampling on eight-octant transition cubes[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(12): 4935–4943. doi: 10.1109/TCAD.2020.2968544.
    [12] YU Wenjian, ZHANG Bolong, ZHANG Chao, et al. Utilizing macromodels in floating random walk based capacitance extraction[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 1225–1230.
    [13] XU Jiahao, ZHANG Yibin, GAO Shenghan, et al. A 2-D multi-dielectric capacitance solver based on floating random walk method[C]. 2023 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2023: 1–3. doi: 10.1109/CSTIC58779.2023.10219380.
    [14] WEI Xin, YAN Changhao, ZHOU Hai, et al. An efficient FPGA-based floating random walk solver for capacitance extraction using SDAccel[C]. 2019 Design, Automation & Test in Europe Conference & Exhibition, Florence, Italy, 2019: 1040–1045. doi: 1 0.23919/DATE.2019.8714992.
    [15] YU Wenjian, XU Zhezhao, LI Bo, et al. Floating random walk-based capacitance simulation considering general floating metals[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018, 37(8): 1711–1715. doi: 10.1109/TCAD.2017.2782770.
    [16] ARORA N D, RAOL K V, SCHUMANN R, et al. Modeling and extraction of interconnect capacitances for multilayer VLSI circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1996, 15(1): 58–67. doi: 10.1109/43.486272.
    [17] SAKURAI T and TAMARU K. Simple formulas for two- and three-dimensional capacitances[J]. IEEE Transactions on Electron Devices, 1983, 30(2): 183–185. doi: 10.1109/T-ED.1983.21093.
    [18] CHOUDHURY U and SANGIOVANNI-VINCENTELLI A L. Automatic generation of analytical models for interconnect capacitances[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1995, 14(4): 470–480. doi: 10.1109/43.372374.
    [19] LI Zhixing and SHI Weiping. Layout capacitance extraction using automatic pre-characterization and machine learning[C]. 2020 21st International Symposium on Quality Electronic Design, Santa Clara, USA, 2020: 457–464. doi: 10.1109/ISQED48828.2020.9136970.
    [20] YANG Dingcheng, LI Haoyuan, YU Wenjian, et al. CNN-cap: Effective convolutional neural network-based capacitance models for interconnect capacitance extraction[J]. ACM Transactions on Design Automation of Electronic Systems, 2023, 28(4): 56. doi: 10.1145/3564931.
    [21] ABOUELYAZID M S, HAMMOUDA S, and ISMAIL Y. Accuracy-based hybrid parasitic capacitance extraction using rule-based, neural-networks, and field-solver methods[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(12): 5681–5694. doi: 10.1109/TCAD.2022.3161199.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-26
  • 修回日期:  2025-09-14
  • 网络出版日期:  2025-09-16

目录

    /

    返回文章
    返回