高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合开关电容物理不可克隆函数和一次性可编程的片上RSA加密算法私钥生成方法

李大为 陈铁男 周瑶 江小平 万美琳 张力 贺章擎

李大为, 陈铁男, 周瑶, 江小平, 万美琳, 张力, 贺章擎. 混合开关电容物理不可克隆函数和一次性可编程的片上RSA加密算法私钥生成方法[J]. 电子与信息学报. doi: 10.11999/JEIT250382
引用本文: 李大为, 陈铁男, 周瑶, 江小平, 万美琳, 张力, 贺章擎. 混合开关电容物理不可克隆函数和一次性可编程的片上RSA加密算法私钥生成方法[J]. 电子与信息学报. doi: 10.11999/JEIT250382
LI Dawei, CHEN Tienan, ZHOU Yao, JIANG Xiaoping, WAN Meilin, ZHANG Li, HE Zhangqing. Generating Private Key of RSA Encryption Algorithm Using On-Chip Physical Unclonable Functions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250382
Citation: LI Dawei, CHEN Tienan, ZHOU Yao, JIANG Xiaoping, WAN Meilin, ZHANG Li, HE Zhangqing. Generating Private Key of RSA Encryption Algorithm Using On-Chip Physical Unclonable Functions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250382

混合开关电容物理不可克隆函数和一次性可编程的片上RSA加密算法私钥生成方法

doi: 10.11999/JEIT250382 cstr: 32379.14.JEIT250382
基金项目: 武汉市科技计划项目(曙光计划)(2023010201020463),中央高校基本科研业务费专项资金自科重点项目 (CZZ24001)
详细信息
    作者简介:

    李大为:男,副教授,研究方向为模拟IC设计,物联网安全

    陈铁男:男,硕士生,研究方向为物联网安全,神经网络

    周瑶:女,硕士生,研究方向为模拟IC设计,LDO

    江小平:男,教授,研究方向为物联网与智能安防技术

    万美琳:男,教授,研究方向为数模混合集成电路设计

    张力:男,副教授,研究方向为RISC-V处理器设计与应用

    贺章擎:男,教授,研究方向为集成电路设计与安全

    通讯作者:

    万美琳 wanml@hubu.edu.cn

  • 中图分类号: TP309.7; TN4

Generating Private Key of RSA Encryption Algorithm Using On-Chip Physical Unclonable Functions

Funds: The Knowledge Innovation Program of Wuhan-ShuGuang (2023010201020463), The Fundamental Research Funds for the Central Universities of South-Central Minzu University (CZZ24001)
  • 摘要: Rivest-Shamir-Adleman(RSA)加密算法作为一种非对称加密算法,被认为是目前最安全的加密方法之一。传统RSA私钥存在存储开销大、功耗高和易受攻击等问题,针对RSA私钥面临非易失性存储器(NVM)存储依赖及物理探测攻击,该文提出一种新型RSA私钥生成架构,该方案基于SMIC 180 nm 标准CMOS工艺,利用全定制开关电容物理不可克隆函数(SC-PUF)单元产生随机密钥,采用片上1次可编程单元(OTP)将SC-PUF的输出随机密钥直接映射为满足要求的RSA私钥,完全消除NVM依赖。同时SC-PUF提供的容性敏感金属层能够有效保护OTP的编辑状态不被攻击者获取,保证了整个密钥产生电路的安全性。实验结果显示,芯片总体面积为18.77 mm2,功耗218 mW,基于SC-PUF和OTP的RSA私钥产生电路不仅能够有效产生密钥,且整个RSA算法工作正常,验证了该新型RSA私钥生成架构的可行性和安全性。
  • 图  1  基于 OTP 映射的片内 PUF RSA 私钥生成方案

    图  2  XXXXXXXX

    图  3  OTP-PUF 电路

    图  4  基于电容型 PUF 的抗侵入式攻击设计方案

    图  5  XXXXXXXXXXXXX

    图  6  RSA 安全芯片与 SC-PUF 的版图及芯片照片

    图  7  SC-PUF 侵入式攻击测试示意图

    表  1  与其他 RSA 实现方案的对比

    指标 文献[14] 文献[15] 文献[16] 本文方法
    实现平台TSMC 0.13 μm TSMC 0.18 μm Samsung 0.50 μm SMIC 0.18 μm
    密钥存储方式 NVM NVM NVM SC-PUF+OTP
    算法 RSA-1024 RSA-1024 RSA-1024 RSA-2048
    面积 (Kgates) 139 148 156 343
    频率(MHz) 500 450 50 50
    功耗(mW) - - - 218
    吞吐量(Kbit/(s·Hz)) 243.19 214 46.55 187.09
    下载: 导出CSV
  • [1] BURKHARDT J, DAMGÅRD I, FREDERIKSEN T K, et al. Improved distributed RSA key generation using the miller-Rabin test[C]. Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 2501–2515. doi: 10.1145/3576915.3623163.
    [2] TYAGI N, FISCH B, ZITEK A, et al. VeRSA: Verifiable registries with efficient client audits from RSA authenticated dictionaries[C]. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 2793–2807. doi: 10.1145/3548606.3560605.
    [3] KEMMOE V Y and LYSYANSKAYA A. RSA-based dynamic accumulator without hashing into primes[C]. Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 4271–4285. doi: 10.1145/3658644.3690199.
    [4] DIMITROV V, VIGNERI L, and ATTIAS V. Fast generation of RSA keys using smooth integers[J]. IEEE Transactions on Computers, 2022, 71(7): 1575–1585. doi: 10.1109/TC.2021.3095669.
    [5] REDDY S S, SINHA S, and ZHANG Wei. Design and analysis of RSA and paillier homomorphic cryptosystems using PSO-based evolutionary computation[J]. IEEE Transactions on Computers, 2023, 72(7): 1886–1900. doi: 10.1109/TC.2023.3234213.
    [6] SALA R D, BELLIZIA D and SCOTTI G. Unveiling the true power of the latched ring oscillator for a unified PUF and TRNG architecture[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(12): 2403–2407. doi: 10.1109/TVLSI.2024.3448503.
    [7] REN Qirui, HUO Qiang, CHEN Zhisheng, et al. A security-enhanced, charge-pump-free, ISO14443-A-/ISO10373–6-compliant RFID tag with 16.2-μW embedded RRAM and reconfigurable strong PUF[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(2): 243–252. doi: 10.1109/TVLSI.2022.3222522.
    [8] AGHAPOUR S, AHMADI K, ANASTASOVA M, et al. PUF-Kyber: Design of a PUF-Based Kyber architecture benchmarked on diverse ARM processors[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(12): 4453–4462. doi: 10.1109/TCAD.2024.3399669.
    [9] LAO Yingjie and PARHI K K. Statistical analysis of MUX-based physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(5): 649–662. doi: 10.1109/TCAD.2013.2296525.
    [10] SAHOO D P, MUKHOPADHYAY D, CHAKRABORTY R S, et al. A multiplexer-based arbiter PUF composition with enhanced reliability and security[J]. IEEE Transactions on Computers, 2018, 67(3): 403–417. doi: 10.1109/TC.2017.2749226.
    [11] USMANI M A, KESHAVARZ S, MATTHEWS E, et al. Efficient PUF-based key generation in FPGAs using per-device configuration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(2): 364–375. doi: 10.1109/TVLSI.2018.2877438.
    [12] WAN Meilin, HE Zhangqing, HAN Shuang, et al. An invasive-attack-resistant PUF based on switched-capacitor circuit[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(8): 2024–2034. doi: 10.1109/TCSI.2015.2440739.
    [13] ZHANG Yin, HE Zhangqing, WAN Meilin, et al. A SC PUF standard cell used for key generation and anti-invasive-attack protection[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3958–3973. doi: 10.1109/TIFS.2021.3089854.
    [14] SHIEH M D, CHEN Junhong, WU H H, et al. A new modular exponentiation architecture for efficient design of RSA cryptosystem[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16(9): 1151–1161. doi: 10.1109/TVLSI.2008.2000524.
    [15] LIU Qiang, MA Fangzhen, TONG Dong, et al. A regular parallel RSA processor[C]. Proceedings of the 2004 47th Midwest Symposium on Circuits and Systems, Hiroshima, Japan, 2004: iii–467. doi: 10.1109/MWSCAS.2004.1354396.
    [16] KWON T W, YOU C S, HEO W S, et al. Two implementation methods of a 1024-bit RSA cryptoprocessor based on modified Montgomery algorithm[C]. Proceedings of 2001 IEEE International Symposium on Circuits and Systems, Sydney, Australia, 2001: 650–653. doi: 10.1109/ISCAS.2001.922321.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 修回日期:  2025-09-03
  • 网络出版日期:  2025-09-09

目录

    /

    返回文章
    返回