高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
排序:
相关度
发表时间
每页显示:
10
20
30
50
基于多层感知卷积和通道加权的图像隐写检测
叶学义, 郭文风, 曾懋胜, 张珂绅, 赵知劲
2022, 44(8): 2949-2956. doi: 10.11999/JEIT210537  刊出日期:2022-08-17
关键词: 隐写检测, 卷积神经网络, 多层感知卷积, 通道加权
针对目前图像隐写检测模型中线性卷积层对高阶特征表达能力有限,以及各通道特征图没有区分的问题,该文构建了一个基于多层感知卷积和通道加权的卷积神经网络(CNN)隐写检测模型。该模型使用多层感知卷积(Mlpconv)代替传统的线性卷积,增强隐写检测模型对高阶特征的表达能力;同时引入通道加权模块,实现根据全局信息对每个卷积通道赋予不同的权重,增强有用特征并抑制无用特征,增强模型提取检测特征的质量。实验结果表明,该检测模型针对不同典型隐写算法及不同嵌入率,相比Xu-Net, Yedroudj-Net, Zhang-Net均有更高的检测准确率,与最优的Zhu-Net相比,准确率提高1.95%~6.15%。
基于同态加密和群签名的可验证联邦学习方案
李亚红, 李一婧, 杨小东, 张源, 牛淑芬
2025, 47(3): 758-768. doi: 10.11999/JEIT240796  刊出日期:2025-03-01
关键词: 隐私保护, 联邦学习, 车载自组网, 可验证聚合, 群签名
在车载网络(VANETs)中,联邦学习(FL)通过协同训练机器学习模型,实现了车辆间的数据隐私保护,并提高了整体模型的性能。然而,FL在VANETs中的应用仍面临诸多挑战,如模型泄露风险、训练结果验证困难以及高计算和通信成本等问题。针对这些问题,该文提出一种面向联邦学习的可验证隐私保护批量聚合方案。首先,该方案基于Boneh-Lynn-Shacham (BLS)动态短群聚合签名技术,保护了客户端与路边单元(RSU)交互过程中的数据完整性,确保全局梯度模型更新与共享过程的不可篡改性。当出现异常结果时,方案利用群签名的特性实现车辆的可追溯性。其次,结合改进的Cheon-Kim-Kim-Song (CKKS)线性同态哈希算法,对梯度聚合结果进行验证,确保在联邦学习的聚合过程中保持客户端梯度的机密性,并验证聚合结果的准确性,防止服务器篡改数据导致模型训练无效的问题。此外,该方案还支持车辆在部分掉线的情况下继续更新模型,保障系统的稳定性。实验结果表明,与现有方案相比,该方案在提升数据隐私安全性和结果的可验证性的同时,保证了较高效率。