2016, 38(1): 23-28.
doi: 10.11999/JEIT150546
刊出日期:2016-01-19
论文为解决旋转目标图像匹配问题,提出旋转不变梯度直方图(RI-HOG)目标描述方法。RI-HOG描述方法首先将目标区域等间隔划分为多个同心圆环并统计每个圆环的梯度直方图(HoG),各圆环HoG累加的结果作为目标区域的主方向,再将各圆环HoG根据主方向旋转相应角度作主方向归一化处理,最后把旋转后的各圆环HoG按空间顺序连接后即生成RI-HOG。对实际采集图像的仿真结果表明,基于RI-HOG的目标匹配算法在目标旋转任意角度时依然能够准确检测到目标。RI-HOG具有很好的旋转不变性。
2025, 47(4): 1172-1181.
doi: 10.11999/JEIT240855
刊出日期:2025-04-01
已有的深度主动聚类方法未能通过标注样本推理生成必须链接(ML)约束或不能链接(CL)约束,标注成本较高。为此该文提出一种基于约束传递的深度主动时序聚类方法。该方法设置了标注类簇集合(ACS)及相应的辅助标注集合(AAS)。通过预训练时序自编码器得到时序样本的表示向量。在深度聚类的每个训练轮次过程中,采样并标注表示空间中离类簇中心最近的样本存入ACS,使每个ACS内的样本属同一类别而ACS集合间的样本属于不同类别,然后从包含样本数最小的ACS集合中随机选取时序样本,采样并标注与该样本不属于同一类簇且距其所在类簇中心最近的时序样本存入AAS,使ACS与相应的AAS中的样本为不同类别,由ACS及对应的AAS中的样本推理生成ML和CL约束。由基于t-分布的类簇分布与其生成的辅助分布间的KL散度以及使满足ML及CL约束的时序样本在表示空间距离分别变小和变大的约束损失更新时序自编码器中编码网络参数和聚类中心。在18个公开数据集上的实验结果表明,该方法聚类效果在较低标注预算下平均RI值比已有的典型基线模型均提升5%以上。