2006, 28(4): 597-602.
刊出日期:2006-04-19
基于视觉采样原理,该文提出了一般化的视觉采样聚类方法VSC。该方法将视觉原理与著名的Weber定律结合起来,其特点是:对聚类初始条件不敏感;Weber定律提供了新的聚类有效性标准,并且该方法所得到的合理的聚类数可以依据Weber定律而得到。大量的实验结果表明了算法VSC的有效性。文中讨论了算法VSC与由Yang Miin-Shen等人(2004)新近提出的基于相似度量的聚类算法SCA之间的内在联系,得出了这两个算法具有一定的同解性质,从而揭示了该文所提方法VSC能够有效地克服算法SCA中参数 不易确定的困难。
2006, 28(8): 1415-1417.
刊出日期:2006-08-19
关键词:
数字签名;代理签名;多重代理;多重签名
为克服多重代理签名方案中无法确认谁是真正签名者的弱点,Sun于1999年提出了不可否认的代理签名方案。2000年Hwang等人指出Sun的方案不安全,并对Sun的方案进行了改进,2004年 Tzeng, Tan, Yang各自对Hwang等人的方案进行了安全性分析,指出Hwang方案容易受到内部伪造攻击。该文通过让原始签名组与代理签名组互动来实现秘密共享和密钥分配的方法,设计了一种新的安全的多重代理、多重签名方案,它能够满足不可否认性和不可伪造性的要求。
2007, 29(10): 2529-2532.
doi: 10.3724/SP.J.1146.2006.00414
刊出日期:2007-10-19
Gu-Zhang-Yang(2005)提出了一个不需要可信第三方参与的匿名代理签名方案,由于该方案的签名验证数据中没有回避孤悬因子这一现象,因此并不满足强不可伪造性,原始签名人可以伪造一个有效的代理签名通过验证,并成功地在代理签名者身份揭示阶段向公众证明该伪造的代理签名是由合法的代理签名者产生的。本文在分析该方案安全性的基础上提出了改进的匿名代理签名方案,克服了原方案的不足。
2025, 47(3): 758-768.
doi: 10.11999/JEIT240796
刊出日期:2025-03-01
在车载网络(VANETs)中,联邦学习(FL)通过协同训练机器学习模型,实现了车辆间的数据隐私保护,并提高了整体模型的性能。然而,FL在VANETs中的应用仍面临诸多挑战,如模型泄露风险、训练结果验证困难以及高计算和通信成本等问题。针对这些问题,该文提出一种面向联邦学习的可验证隐私保护批量聚合方案。首先,该方案基于Boneh-Lynn-Shacham (BLS)动态短群聚合签名技术,保护了客户端与路边单元(RSU)交互过程中的数据完整性,确保全局梯度模型更新与共享过程的不可篡改性。当出现异常结果时,方案利用群签名的特性实现车辆的可追溯性。其次,结合改进的Cheon-Kim-Kim-Song (CKKS)线性同态哈希算法,对梯度聚合结果进行验证,确保在联邦学习的聚合过程中保持客户端梯度的机密性,并验证聚合结果的准确性,防止服务器篡改数据导致模型训练无效的问题。此外,该方案还支持车辆在部分掉线的情况下继续更新模型,保障系统的稳定性。实验结果表明,与现有方案相比,该方案在提升数据隐私安全性和结果的可验证性的同时,保证了较高效率。