1992, 14(5): 486-495.
刊出日期:1992-09-19
P.H.Pathak,Wang Nan等人在研究典型问题几何绕射理论之后,于1981年发表了任意导电凸曲面振子天线高频电磁辐射一致性几何绕射理论近似解。本文应用并矢格林函数方法,通过典型曲面高频电磁辐射一致性近似解的研究和推广,导出了理想导电凸曲面上电、磁振子电磁辐射场在高频近似下一致性几何绕射理论近似解。与P.H.Pathak,Wang Nan等人的结果相比,主项并矢转移函数除个别系数外完全相同,高阶并矢转移函数在几何光学区略有差异。
2005, 27(2): 235-238.
刊出日期:2005-02-19
关键词:
群签名; 伪造攻击; 不关联性
群签名允许群成员以匿名的方式代表整个群体对消息进行签名。而且,一旦发生争议,群管理员可以识别出签名者。该文对Posescu(2000)群签名方案和Wang-Fu(2003)群签名方案进行了安全性分析,分别给出一种通用伪造攻击方法,使得任何人可以对任意消息产生有效群签名,而群权威无法追踪到签名伪造者。因此这两个方案都是不安全的。
2006, 28(6): 1031-1035.
刊出日期:2006-06-19
该文提出一组基于广义局部沃尔什变换(GLWT)的纹理特征。首先给出局部沃尔什变换(LWT)的定义,并在空域中对其加以推广,用以提取图像的局部纹理信息;然后在一个宏窗口中估计12个GLWT系数的二阶矩作为图像的纹理特征。对这组纹理特征的鉴别性能进行了分析,并与Haralick(1973),Wang Li(1990),以及Yu Hui提出的纹理特征进行了比较。实验结果表明,该文提出的纹理特征具有更好的鉴别性能和分类能力。
2009, 31(7): 1732-1735.
doi: 10.3724/SP.J.1146.2008.00928
刊出日期:2009-07-19
关键词:
环签名;密码分析;可转换性
通过对Zhang-Liu-He (2006),Gan-Chen (2004)和Wang-Zhang-Ma (2007)提出的可转换环签名方案进行分析,指出了这几个可转换环签名方案存在可转换性攻击或不可否认性攻击,即,环中的任何成员都能宣称自己是实际签名者或冒充别的成员进行环签名。为防范这两种攻击,对这几个可转换环签名方案进行了改进,改进后的方案满足可转换环签名的安全性要求。
2009, 31(3): 740-744.
doi: 10.3724/SP.J.1146.2007.01562
刊出日期:2009-03-19
Wang Xiaoyun等(2005)给出了MD5能产生碰撞的一个充分条件集,并首次成功对MD5进行了碰撞攻击。Yuto Nakano等(2006)指出上述充分条件集中有16个条件是冗余的,并给出了其中14个条件冗余的原因。Liang Jie和Lai Xuejia(2005)指出Wang Xiaoyun等给出的充分条件集并非总能产生碰撞,并增加新的条件使之总能产生碰撞,同时提出了一个新的碰撞攻击算法。本文证明了Yuto Nakano等给出的16个冗余条件中有两个并不冗余,且Liang Jie和Lai Xuejia增加的新条件中有两个是冗余的,指出Liang Jie和Lai Xuejia的碰撞攻击算法在消息修改时忽视了被修改条件之间的制约性,因而未必总能产生碰撞,本文对此进行了修正,给出新的充分条件集,并通过实验验证了该充分条件集总能产生碰撞。
2020, 42(3): 720-728.
doi: 10.11999/JEIT190230
刊出日期:2020-03-19
SIMON系列算法自提出以来便受到了广泛关注。积分分析方面,Wang,Fu和Chu等人给出了SIMON32和SIMON48算法的积分分析,该文在已有的分析结果上,进一步考虑了更长分组的SIMON64算法的积分分析。基于Xiang等人找到的18轮积分区分器,该文先利用中间相遇技术和部分和技术给出了25轮SIMON64/128算法的积分分析,接着利用等价密钥技术进一步降低了攻击过程中需要猜测的密钥量,并给出了26轮SIMON64/128算法的积分分析。通过进一步的分析,该文发现高版本的SIMON算法具有更好抵抗积分分析的能力。
2015, 37(4): 881-886.
doi: 10.11999/JEIT140831
刊出日期:2015-04-19
目前基于标签的Grbner基算法大多是Buchberger型的,涉及矩阵型算法的文献往往是为了进行复杂度分析,而不考虑实际的效率。该文从实际应用出发,给出矩阵型Gao-Volny-Wang(GVW)算法的一个实例,提出算法层次的优化设计方法。同时,该文还给出一个高效的约化准则。通过实验,该文比较了算法可用的各项准则及策略。实验结果表明,该文的矩阵型GVW实例在准则和策略的选取上是最优的。并且,矩阵型GVW在某些多项式系统(例如,Cyclic系列和Katsura系列多项式系统)下比Buchberger型GVW要快2~6倍。
2025, 47(3): 758-768.
doi: 10.11999/JEIT240796
刊出日期:2025-03-01
在车载网络(VANETs)中,联邦学习(FL)通过协同训练机器学习模型,实现了车辆间的数据隐私保护,并提高了整体模型的性能。然而,FL在VANETs中的应用仍面临诸多挑战,如模型泄露风险、训练结果验证困难以及高计算和通信成本等问题。针对这些问题,该文提出一种面向联邦学习的可验证隐私保护批量聚合方案。首先,该方案基于Boneh-Lynn-Shacham (BLS)动态短群聚合签名技术,保护了客户端与路边单元(RSU)交互过程中的数据完整性,确保全局梯度模型更新与共享过程的不可篡改性。当出现异常结果时,方案利用群签名的特性实现车辆的可追溯性。其次,结合改进的Cheon-Kim-Kim-Song (CKKS)线性同态哈希算法,对梯度聚合结果进行验证,确保在联邦学习的聚合过程中保持客户端梯度的机密性,并验证聚合结果的准确性,防止服务器篡改数据导致模型训练无效的问题。此外,该方案还支持车辆在部分掉线的情况下继续更新模型,保障系统的稳定性。实验结果表明,与现有方案相比,该方案在提升数据隐私安全性和结果的可验证性的同时,保证了较高效率。