Citation: | WEI Xiaotong, XU Haobo, YIN Chundi, HUANG Junpei, SUN Wenhao, XU Wenjun, WANG Ying, LIU Yaoqi, MENG Fantao, MIN Feng, WANG Mengdi, HAN Yinhe. Space-based Computing Chips: Current Status, Trends and Key Technique[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250633 |
[1] |
LENTARIS G, MARAGOS K, STRATAKOS I, et al. High-performance embedded computing in space: Evaluation of platforms for vision-based navigation[J]. Journal of Aerospace Information Systems, 2018, 15(4): 178–192. doi: 10.2514/1.I010555.
|
[2] |
冯颖, 刘忠健. 单粒子效应对飞行器的影响分析及防护技术[J]. 强度与环境, 2011, 38(1): 26–30. doi: 10.3969/j.issn.1006-3919.2011.01.005.
FENG Ying and LIU Zhongjian. Single event effect analysis on the spacecraft and the technique designed in the protection[J]. Structure & Environment Engineering, 2011, 38(1): 26–30. doi: 10.3969/j.issn.1006-3919.2011.01.005.
|
[3] |
GUERTIN S M, SOME R, NSENGIYUMVA P, et al. Radiation specification and testing of heterogenous microprocessor SOCs[C]. 2019 19th European Conference on Radiation and Its Effects on Components and Systems, Montpellier, France, 2022: 1–7. doi: 10.1109/RADECS47380.2019.9745708.
|
[4] |
孙宝三, 章宇兵, 岳兆娟, 等. 面向服务的天基计算技术架构研究[J]. 中国电子科学研究院学报, 2018, 13(4): 427–432. doi: 10.3969/j.issn.1673-5692.2018.04.012.
SUN Baosan, ZHANG Yubing, YUE Zhaojuan, et al. Study on service-oriented architecture of space-borne computing[J]. Journal of China Academy of Electronics and Information Technology, 2018, 13(4): 427–432. doi: 10.3969/j.issn.1673-5692.2018.04.012.
|
[5] |
XU Mengwei, ZHANG Li, LI Hongyu, et al. A satellite-born server design with massive tiny chips towards in-space computing[C]. 2022 IEEE International Conference on Satellite Computing, Shenzhen, China, 2022: 1–6. doi: 10.1109/Satellite55519.2022.00009.
|
[6] |
董珊. 星载遥感图像实时处理专用芯片的抗辐照电路设计[D]. [硕士论文], 北京理工大学, 2016.
DONG Shan. The radiation-hardened circuit design of a Space-borne remote sensing image real-time processing chip[D]. [Master dissertation], Beijing Institute of Technology, 2016.
|
[7] |
BAE Systems. BAE Systems RAD6000 datasheet[EB/OL]. https://www.digchip.com/datasheets/parts/datasheet/568/RAD6000-pdf.php, 2025.
|
[8] |
BEDI R. Spacecraft on-board computing using rad-hard ARM MCUs[EB/OL]. https://www.edn.com/spacecraft-on-board-computing-using-rad-hard-arm-mcus/, 2025.
|
[9] |
KELLER J. NOVI chooses VORAGO radiation-hardened microcontroller for space computer that will fly on SpaceX mission[EB/OL]. https://www.militaryaerospace.com/computers/article/55093107/vorago-technologies-radiation-hardened-microcontroller-space, 2025.
|
[10] |
SHILOV A. Nvidia's Jetson AI board is ready to go to space[EB/OL]. https://www.tomshardware.com/news/nvidias-jetson-ai-board-is-ready-to-go-to-space, 2025.
|
[11] |
Intel. Intel® Movidius™ Myriad™ X vision processing unit 4GB[EB/OL]. https://www.intel.com/content/www/us/en/products/sku/125926/intel-movidius-myriad-x-vision-processing-unit-4gb/specifications.html, 2025.
|
[12] |
CRATERE A, GAGLIARDI L, SANCA G A, et al. On-board computer for CubeSats: State-of-the-art and future trends[J]. IEEE Access, 2024, 12: 99537–99569. doi: 10.1109/ACCESS.2024.3428388.
|
[13] |
GARCÍA L P, FURANO G, GHIGLIONE M, et al. Advancements in onboard processing of synthetic aperture radar (SAR) data: Enhancing efficiency and real-time capabilities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 16625–16645. doi: 10.1109/JSTARS.2024.3406155.
|
[14] |
HAMILTON D. Medical system design challenges for exploration class space missions[EB/OL]. https://marspapers.org/paper/Hamilton_2024.4_1.9contrib.pdf, 2025.
|
[15] |
UNIBAP. SpaceCloud® iX5–106[EB/OL]. https://unibap.com/wp-content/uploads/2023/09/spacecloud-ix5-100-product-overview-v27.pdf, 2025.
|
[16] |
ATMEL. Rad-hard 32-bit SPARC embedded processor, TSC695E[EB/OL]. https://pdf.dzsc.com/88889/26096.pdf, 2025.
|
[17] |
ATMEL. Rad-hard 32 bit SPARC V8 processor, AT697F[EB/OL]. https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/doc7703.pdf, 2025.
|
[18] |
SJÄLANDER M, HABINC S, and GAISLER J. LEON4: Fourth generation of the LEON processor[EB/OL]. https://sjalander.com/research/pdf/sjalander-dasia2009.pdf, 2025.
|
[19] |
CAES. LEON and NOEL-V SoC architectures[EB/OL]. https://www.frontgrade.com/sites/default/files/documents/Position-Paper-LEON-NOELV-SoC-Architectures-2022-02-22.pdf, 2025.
|
[20] |
HE Yating, JI Xiaoyan, ZHAO Rui, et al. A software reconfiguration method for CPU of satellite-board controller[C]. Proceedings of SPIE 13079, Third International Conference on Testing Technology and Automation Engineering, Xi’an, China, 2023: 130790P. doi: 10.1117/12.3015550.
|
[21] |
北京微电子技术研究所. 300MHz抗辐照SPARC CPU产品使用手册[EB/OL]. https://www.manuallib.com/download/6B25900E1D2FF9CE7479DEC5434FE780.pdf, 2025.
Beijing Institute of Microelectronics Technology. User manual for 300MHz radiation-hardened SPARC CPU product[EB/OL]. https://www.manuallib.com/download/6B25900E1D2FF9CE7479DEC5434FE780.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
|
[22] |
WHITTAKER A. Raspberry Pi Zero powers CubeSat space mission[EB/OL]. https://www.raspberrypi.com/news/raspberry-pi-zero-powers-cubesat-space-mission/, 2025.
|
[23] |
Airbus. Defence and space: PureLine[EB/OL]. https://www.airbus.com/sites/g/files/jlcbta136/files/2024-12/Datasheet_SpE_PureLine_Amethyst_2022.pdf, 2025.
|
[24] |
VORAGO. VA7230 edge computing microprocessor for space applications[EB/OL]. https://www.voragotech.com/va7230-edge-computing-microprocessor, 2025.
|
[25] |
Phytium. 飞腾腾锐D2000处理器数据手册[EB/OL]. https://gitcode.com/Open-source-documentation-tutorial/fdcb3/blob/main/%E9%A3%9E%E8%85%BE%E8%85%BE%E9%94%90D2000%E5%A4%84%E7%90%86%E5%99%A8%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.
Phytium. Data manual for Phytium Tengrui D2000 series processor[EB/OL]. https://gitcode.com/Open-source-documentation-tutorial/fdcb3/blob/main/%E9%A3%9E%E8%85%BE%E8%85%BE%E9%94%90D2000%E5%A4%84%E7%90%86%E5%99%A8%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
|
[26] |
Frontgrade Gaisler. NOEL-V[EB/OL]. https://www.gaisler.com/products/noel-v, 2025.
|
[27] |
NASA. NASA’s high performance spaceflight computer[EB/OL]. https://www.nasa.gov/wp-content/uploads/2024/07/hpsc-white-paper-tmg-26jun2024-final.pdf, 2025.
|
[28] |
国科安芯. MCU芯片-AS32S601数据手册[EB/OL]. https://ansilic.com/wp-content/uploads/2024/09/MCU%E8%8A%AF%E7%89%87-AS32S601%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.
ANSILIC. MCU chip-AS32S601 data sheet[EB/OL]. https://ansilic.com/wp-content/uploads/2024/09/MCU%E8%8A%AF%E7%89%87-AS32S601%E6%95%B0%E6%8D%AE%E6%89%8B%E5%86%8C.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
|
[29] |
胡伟武, 汪文祥, 吴瑞阳, 等. 龙芯指令系统架构技术[J]. 计算机研究与发展, 2023, 60(1): 2–16. doi: 10.7544/issn1000-1239.202220196.
HU Weiwu, WANG Wenxiang, WU Ruiyang, et al. Loongson instruction set architecture technology[J]. Journal of Computer Research and Development, 2023, 60(1): 2–16. doi: 10.7544/issn1000-1239.202220196.
|
[30] |
国家航天局. “龙芯”上天 北斗有了“中国芯”[EB/OL]. https://www.cnsa.gov.cn/n6758824/n6759009/n6759043/n6759069/c6577136/content.html, 2025.
National Space Administration. "Loongson" is launched into space, Beidou now has its own "Chinese core"[EB/OL]. https://www.cnsa.gov.cn/n6758824/n6759009/n6759043/n6759069/c6577136/content.html, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
|
[31] |
龙芯中科. 龙芯1F处理器数据手册[EB/OL]. https://www.docin.com/p-1975324773.html, 2025.
Loongson Technology. Data sheet for Loongson 1F processor[EB/OL]. https://www.docin.com/p-1975324773.html, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
|
[32] |
Wikipedia. Apollo guidance computer[EB/OL]. https://en.wikipedia.org/wiki/Apollo_Guidance_Computer, 2025.
|
[33] |
Wikipedia. IBM RAD6000[EB/OL]. https://en.wikipedia.org/wiki/IBM_RAD6000, 2025.
|
[34] |
ESA. LEON’s first flights[EB/OL]. https://www.esa.int/Enabling_Support/Space_Engineering_Technology/LEON_s_first_flights, 2025.
|
[35] |
ARM. ARM and VORAGO technologies take space electronics to new heights[EB/OL]. https://newsroom.arm.com/news/arm-and-vorago-technologies-take-space-electronics-to-new-heights, 2025.
|
[36] |
ESA. OPS-SAT(Operations nanoSatellite)[EB/OL]. https://www.eoportal.org/satellite-missions/ops-sat#eop-quick-facts-section, 2025.
|
[37] |
GARCÉS-SOCARRÁS L M, NIK A, ORTIZ F, et al. Artificial intelligence satellite telecommunication testbed using commercial off-the-shelf chipsets[EB/OL]. arXiv: 2405.18297, https://arxiv.org/abs/2405.18297, 2024. (查阅网上资料,未能确认本条文献修改是否正确,请确认).
|
[38] |
LI Lin, ZHANG Shengbing, and WU Juan. Efficient object detection framework and hardware architecture for remote sensing images[J]. Remote Sensing, 2019, 11(20): 2376. doi: 10.3390/rs11202376.
|
[39] |
GEIST A, BREWER C, DAVIS M, et al. SpaceCube v3.0 NASA next-generation high-performance processor for science applications[C]. 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2019: 158.
|
[40] |
XILINX. VIRTEX-5QV FPGA FAMILY[EB/OL]. https://www.xilinx.com/publications/prod_mktg/virtex5qv-product-brief.pdf, 2025.
|
[41] |
XILINX. XQR Space-grade Kintex™ UltraScale™ and space heritage[EB/OL]. https://www.xilinx.com/content/dam/xilinx/publications/solution-briefs/xilinx-space-solution-brief.pdf, 2025.
|
[42] |
Actel. RTAX-S testing and reliability update[EB/OL]. https://ww1.microchip.com/downloads/aemdocuments/documents/fpga/ProductDocuments/SupportingCollateral/rtaxs_rel_test_wp.pdf, 2025.
|
[43] |
Microchip. RTG4TM radiation-tolerant FPGAs[EB/OL]. https://www.microchip.com/en-us/products/fpgas-and-plds/radiation-tolerant-fpgas/rtg4-radiation-tolerant-fpgas, 2025.
|
[44] |
LEON V, STAMOULIAS I, LENTARIS G, et al. Development and testing on the European space-grade BRAVE FPGAs: Evaluation of NG-large using high-performance DSP benchmarks[J]. IEEE Access, 2021, 9: 131877–131892. doi: 10.1109/ACCESS.2021.3114502.
|
[45] |
俞军, 徐烈伟, 俞剑, 等. 高可靠亿门级FPGA芯片关键技术及产业化[Z]. 复旦大学, 2020.
YU Jun, XU Liewei, YU Jian, et al. Key technologies and industrialization of high-reliability billion-gate FPGA chips[Z]. Fudan University, 2020. (查阅网上资料, 未找到对应的英文翻译, 请确认).
|
[46] |
PERSYN S C, MCLELLAND M, EPPERLY N, et al. Evolution of digital signal processing based spacecraft computing solutions[C]. IEEE Aerospace Conference, Big Sky, USA, 2002: 4. doi: 10.1109/AERO.2002.1036902.
|
[47] |
CORDIS. DSP for space applications[EB/OL]. https://cordis.europa.eu/project/id/262798/reporting, 2025.
|
[48] |
ADAMS C, SPAIN A, PARKER J, et al. Towards an integrated GPU accelerated SoC as a flight computer for small satellites[C]. 2019 IEEE Aerospace Conference, Big Sky, USA, 2019: 1–7. doi: 10.1109/AERO.2019.8741765.
|
[49] |
WANG Mi, ZHANG Zhiqi, ZHU Ying, et al. Embedded GPU implementation of sensor correction for on-board real-time stream computing of high-resolution optical satellite imagery[J]. Journal of Real-Time Image Processing, 2018, 15(3): 565–581. doi: 10.1007/s11554-017-0741-0.
|
[50] |
ZHANG Zhiqi, WEI Lu, XIANG Shao, et al. Task-driven onboard real-time panchromatic multispectral fusion processing approach for high-resolution optical remote sensing satellite[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 7636–7661. doi: 10.1109/JSTARS.2023.3305231.
|
[51] |
KESUMA H, AHMADI-POUR S, JOSEPH A, et al. Artificial intelligence implementation on voice command and sensor anomaly detection for enhancing human habitation in space mission[C]. 2019 9th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2019: 579–584. doi: 10.1109/RAST.2019.8767447.
|
[52] |
SABOGAL S, GEORGE A, and CRUM G. ReCoN: A reconfigurable CNN acceleration framework for hybrid semantic segmentation on hybrid SoCs for space applications[C]. 2019 IEEE Space Computing Conference, Pasadena, USA, 2019: 41–52. doi: 10.1109/SpaceComp.2019.00010.
|
[53] |
航宇微. 高性能嵌入式AI处理器Yulong810A简介[EB/OL]. https://www.myorbita.net/uploadfiles/2024/10/2024102316010919.pdf, 2025.
Aero-Chips. Introduction to high-performance embedded AI processor Yulong810A[EB/OL]. https://www.myorbita.net/uploadfiles/2024/10/2024102316010919.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
|
[54] |
MATSUO I B M, ZHAO Long, and LEE W J. A dual modular redundancy scheme for CPU–FPGA platform-based systems[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5621–5629. doi: 10.1109/TIA.2018.2859386.
|
[55] |
SIM M T and ZHUANG Yanyan. A dual lockstep processor system-on-a-chip for fast error recovery in safety-critical applications[C]. IECON 2020 the 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, Singapore, 2020: 2231–2238. doi: 10.1109/IECON43393.2020.9255188.
|
[56] |
FUCHS C M, CHOU Pai, WEN Xiaoqing, et al. A fault-tolerant MPSoC For CubeSats[C]. 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Noordwijk, Netherlands, 2019: 1–6. doi: 10.1109/DFT.2019.8875417.
|
[57] |
CALDWELL D W and RENNELS D A. A minimalist fault-tolerant microcontroller design for embedded spacecraft computing[J]. The Journal of Supercomputing, 2000, 16(1/2): 7–25. doi: 10.1023/A:1008142728784.
|
[58] |
GEIST A, BREWER C, DAVIS M, et al. SpaceCube v3.0 NASA next-generation high-performance processor for science applications[C]. 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, 2019.
|
[59] |
HARIKRISHNAN P, KARRAS K, CRUZ N, et al. SpaceWire based reconfiguration and redundancy management of COTS based highly integrated onboard computer[C]. 2023 European Data Handling & Data Processing Conference, Juan Les Pins, France, 2023: 1–6. doi: 10.23919/EDHPC59100.2023.10396158.
|
[60] |
PENG Qiao, WAN Xiaoguo, and ZHANG Jiliang. FOSA: A highly fault-tolerant operating system architecture[C]. 2024 IEEE International Test Conference in Asia, Changsha, China, 2024: 1–6. doi: 10.1109/ITC-Asia62534.2024.10661344.
|
[61] |
张吉良, 柴先平, 王爽, 等. 一种软错误防护方法、装置、设备及存储介质[P]. 中国, CN202310715223.5, 2023.
ZHANG Jiliang, CHAI Xianping, WANG Shuang, et al. Soft error protection method and device, equipment and storage medium[P]. CN, CN202310715223.5, 2023.
|
[62] |
FUCHS C M, STEFANOV T P, MURILLO N M, et al. Bringing fault-tolerant Gigahertz-computing to space: A multi-stage software-side fault-tolerance approach for miniaturized spacecraft[C]. 2017 IEEE 26th Asian Test Symposium, Taipei, China, 2017: 100–107. doi: 10.1109/ATS.2017.30.
|
[63] |
ROGENMOSER M, WIESE P, FORLIN B E, et al. Trikarenos: Design and experimental characterization of a fault-tolerant 28-nm RISC-V-based SoC[J]. IEEE Transactions on Nuclear Science, 2025, 72(8): 2783–2792. doi: 10.1109/TNS.2025.3564739.
|
[64] |
ROGENMOSER M, TORTORELLA Y, ROSSI D, et al. Hybrid modular redundancy: Exploring modular redundancy approaches in RISC-V multi-core computing clusters for reliable processing in space[J]. ACM Transactions on Cyber-Physical Systems, 2025, 9(1): 8. doi: 10.1145/3635161.
|
[65] |
ROGENMOSER M, WISTOFF N, VOGEL P, et al. On-demand redundancy grouping: Selectable soft-error tolerance for a multicore cluster[C]. 2022 IEEE Computer Society Annual Symposium on VLSI, Nicosia, Cyprus, 2022: 398–401. doi: 10.1109/ISVLSI54635.2022.00089.
|
[66] |
DÖRFLINGER A, Guan Yejun, MICHALIK S, et al. ECC memory for fault tolerant RISC-V processors[C]. 33rd International Conference on Architecture of Computing Systems, Aachen, Germany, 2020: 44–55. doi: 10.1007/978-3-030-52794-5_4.
|
[67] |
FIFIELD J A and STAPPER C H. High-speed on-chip ECC for synergistic fault-tolerance memory chips[J]. IEEE Journal of Solid-State Circuits, 1991, 26(10): 1449–1452. doi: 10.1109/4.90100.
|
[68] |
LEROUX P. Radiation tolerant electronics[J]. Electronics, 2019, 8(7): 730. doi: 10.3390/electronics8070730.
|
[69] |
NICOLAIDIS M. Design for soft error mitigation[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 405–418. doi: 10.1109/TDMR.2005.855790.
|
[70] |
BAUMANN R C. Radiation-induced soft errors in advanced semiconductor technologies[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 305–316. doi: 10.1109/TDMR.2005.853449.
|
[71] |
SLAYMAN C W. Cache and memory error detection, correction, and reduction techniques for terrestrial servers and workstations[J]. IEEE Transactions on Device and Materials Reliability, 2005, 5(3): 397–404. doi: 10.1109/TDMR.2005.856487.
|
[72] |
LU Zhaojun, ZHAO Qi, CHEN Qidong, et al. A survey on fault-tolerance methods for SRAM-based FPGAs in radiation environments[C]. 2023 IEEE 32nd Asian Test Symposium, Beijing, China, 2023: 1–6. doi: 10.1109/ATS59501.2023.10318028.
|
[73] |
SCHWANK J R, FERLET-CAVROIS V, SHANEYFELT M R, et al. Radiation effects in SOI technologies[J]. IEEE Transactions on Nuclear Science, 2003, 50(3): 522–538. doi: 10.1109/TNS.2003.812930.
|
[74] |
LIU Jia, LI Yao, ZHANG Ruitao, et al. Development of a radiation-hardened standard cell library for 65nm CMOS technology[C]. 2016 China Semiconductor Technology International Conference, Shanghai, China, 2016: 1–3. doi: 10.1109/CSTIC.2016.7464080.
|
[75] |
GREESHMA N and JAMUNA S. Design and analysis of radiation hardened by design non-volatile RAM for space applications[J]. International Journal of Scientific and Research Publications, 2023, 13(6): 397–409. doi: 10.29322/IJSRP.13.06.2023.p13848.
|
[76] |
LEYVA-MAYORGA I, MARTINEZ-GOST M, MORETTI M, et al. Satellite edge computing for real-time and very-high resolution earth observation[J]. IEEE Transactions on Communications, 2023, 71(10): 6180–6194. doi: 10.1109/TCOMM.2023.3296584.
|
[77] |
WANG Yixin, QIU Xiaolan, and WEN Xuejiao. High-resolution SAR imaging characteristics for multiple scattering of rotating targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 9974–9988. doi: 10.1109/JSTARS. 2024.3382038. doi: 10.1109/JSTARS.2024.3382038. doi: 10.1109/JSTARS.2024.3382038.doi:10.1109/JSTARS.2024.3382038.
|
[78] |
LIU Haoting. Autonomous navigation for mars exploration[M]. PEZZELLA G and VIVIANI A. Mars Exploration - A Step Forward. IntechOpen, 2020. doi: 10.5772/intechopen.92093.(查阅网上资料,未找到出版地信息,请补充).
|
[79] |
ZHANG Qinyu, XU Liang, HUANG Jianhao, et al. Distributed satellite information networks: Architecture, enabling technologies, and trends[J]. Science China Information Sciences, 2025, 68(8): 190301. doi: 10.1007/s11432-024-4408-1.
|
[80] |
Advanced Cooling Technologies. VME/VPX card frames[EB/OL]. https://www.1-act.com/thermal-solutions/embedded-computing/vme-vpx/, 2025.
|
[81] |
薄鹏, 汪悦. 面向航天器型号的COTS元器件选用策略[J]. 航天器环境工程, 2023, 40(4): 430–436. doi: 10.12126/see.2023102.
BAO Peng and WANG Yue. Selection strategy of COTS components for spacecraft[J]. Spacecraft Environment Engineering, 2023, 40(4): 430–436. doi: 10.12126/see.2023102.
|
[82] |
张泽明, 张楠. 航天任务中宇航级和COTS元器件的比较和选择[J]. 环境技术, 2023, 41(7): 75–79. doi: 10.3969/j.issn.1004-7204.2023.07.016.
ZHANG Zeming and ZHANG Nan. Comparison and selection of space-grade and COTS components in space missions[J]. Environmental Technology, 2023, 41(7): 75–79. doi: 10.3969/j.issn.1004-7204.2023.07.016.
|
[83] |
侯小宇. 符合我国航空工业发展现状的COTS IP适航要求研究与探索[J]. 民航学报, 2022, 6(4): 82–88,95. doi: 10.3969/j.issn.2096-4994.2022.04.019.
HOU Xiaoyu. Research on and exploration of COTS IP airworthiness requirements for China’s aviation industry[J]. Journal of Civil Aviation, 2022, 6(4): 82–88,95. doi: 10.3969/j.issn.2096-4994.2022.04.019.
|
[84] |
姜盛鑫, 韩天龙, 施帆, 等. 航天COTS产品标准化发展的透视与浅析[J]. 航天标准化, 2022(1): 36–39,49. doi: 10.19314/j.cnki.1009-234x.2022.01.005.
JIANG Shengxin, HAN Tianlong, SHI Fan, et al. Perspective and analysis of the standardization development of COTS for space[J]. Aerospace Standardization, 2022(1): 36–39,49. doi: 10.19314/j.cnki.1009-234x.2022.01.005.
|
[85] |
NASA. Commercial orbital transportation services: A new era in spaceflight[EB/OL]. https://www.nasa.gov/wp-content/uploads/2016/08/sp-2014-617.pdf, 2025.
|
[86] |
DOUGLAS S, MAJEWICZ P. Enabling COTS EEEE parts for NASA missions[EB/OL]. https://ntrs.nasa.gov/api/citations/20250001580/downloads/MRQW_20250001580_v2.pdf, 2025.
|
[87] |
WEIGAND R. RISC-V: A rising star in space[EB/OL]. http://microelectronics.esa.int/papers/PresentationSummit-EUR-RISC-V-RisingStarInSpace-2023-06-08.pdf, 2025.
|
[88] |
Raspberry Pi. Raspberry Pi processors[EB/OL]. https://www.raspberrypi.com/documentation/computers/processors.html, 2025.
|
[89] |
NVIDIA. Jetson TX2 module[EB/OL]. https://developer.nvidia.com/embedded/jetson-tx2, 2025.
|
[90] |
RAMOS R. New tech Tuesdays: Starlink: The satellite-based internet service by SpaceX[EB/OL]. https://my.mouser.com/blog/new-tech-starlink-satellite-based-internet, 2025.
|
[91] |
安信证券. 航天产业研究: 卫星互联网蓄势待发[EB/OL]. https://file.iyanbao.com/pdf/d9d90-e3cc170f-bd84-4f31-8692-a4499289d9bb.pdf, 2025.
Essence Securities. Aerospace industry research: Satellite internet is ready to take off[EB/OL]. https://file.iyanbao.com/pdf/d9d90-e3cc170f-bd84-4f31-8692-a4499289d9bb.pdf, 2025.(查阅网上资料,未找到对应的英文翻译,请确认).
|
[92] |
星测未来. 高性能计算助力卫星智能化[EB/OL]. https://mp.weixin.qq.com/s/mbQT4VkcI-i7iUJysnYXJw, 2025.
StarDetect. High-performance computing powers satellite intelligence[EB/OL]. https://mp.weixin.qq.com/s/mbQT4VkcI-i7iUJysnYXJw, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
|
[93] |
VASKA C, et al. The Cubesat communication platform (CCP) – mission overview and ConOps[C]. The 16th International Conference on Space Operations 2021, 2021. (查阅网上资料, 未找到本条文献信息, 请确认).
|
[94] |
FURANO G, TAVOULARIS A, and ROVATTI M. AI in space: Applications examples and challenges[C]. 2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Frascati, Italy, 2020: 1–6. doi: 10.1109/DFT50435.2020.9250908.
|
[95] |
MALONE S, SAENZ P, and PHELAN P. RISC-V processors for spaceflight embedded platforms[C]. 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–11. doi: 10.1109/AERO55745.2023.10115850.
|
[96] |
WILSON C. SpaceCube v3.0 mini[EB/OL]. https://ntrs.nasa.gov/api/citations/20190027308/downloads/20190027308.pdf, 2025.
|
[97] |
香港航天科技集团. 香港航天科技与中国科学院上海微系统与信息技术研究所合作[EB/OL]. https://www.prnasia.com/story/332577-1.shtml, 2025.
Hong Kong Aerospace Technology Group. Hong Kong aerospace technology collaborates with the Shanghai Institute of Microsystems and information technology, Chinese Academy of Sciences[EB/OL]. https://ntrs.nasa.gov/api/citations/20190027308/downloads/20190027308.pdf, 2025. (查阅网上资料,未找到对应的英文翻译,请确认).
|