Citation: | CHEN Mo, ZHANG Jing, WANG Yanrong, NAZHAMAITI Maimaiti, QIAO Fei. Design of Low-Power On-Chip Cache for Visual Perception Systems on the Edge[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250466 |
[1] |
YANG Zhen, ZHANG Jie, JIANG Yunliang, et al. A self-organizing IoT service perception algorithm based on human visual direction-sensitive system[J]. IEEE Internet of Things Journal, 2023, 10(7): 6193–6204. doi: 10.1109/JIOT.2022.3223039.
|
[2] |
RASTOGI A, KUMAR S, AGGARWAL A, et al. IoT-based smart traffic monitoring and control system for urban areas[C]. 2025 Fourth International Conference on Smart Technologies, Communication and Robotics, Sathyamangalam, India, 2025: 1–6. doi: 10.1109/STCR62650.2025.11018946.
|
[3] |
CHEN Jiao, HE Jiayi, CHEN Fangfang, et al. Empowering IoT-based autonomous driving via federated instruction tuning with feature diversity[J]. IEEE Internet of Things Journal, 2025, 12(6): 6095–6108. doi: 10.1109/JIOT.2024.3518615.
|
[4] |
RIZZO L, ZICARI P, CICIRELLI F, et al. A study on consumer-grade EEG headsets in BCI applications[C]. 2024 IEEE Conference on Pervasive and Intelligent Computing, Boracay Island, Philippines, 2024: 67–74. doi: 10.1109/PICom64201.2024.00016.
|
[5] |
YEOLE P, LABADE Y, WABALE N, et al. IoT-enabled smart wearables for improved visual impairment navigation[C]. 2024 International Conference on Decision Aid Sciences and Applications, Manama, Bahrain, 2024: 1–5. doi: 10.1109/DASA63652.2024.10836578.(查阅网上资料,请确认标黄单词是否正确).
|
[6] |
ABBAS N, ZHANG Yan, TAHERKORDI A, et al. Mobile edge computing: A survey[J]. IEEE Internet of Things Journal, 2018, 5(1): 450–465. doi: 10.1109/JIOT.2017.2750180.
|
[7] |
WANG Sai, LI Xiaoyang, and GONG Yi. Energy-efficient task offloading and resource allocation for delay-constrained edge-cloud computing networks[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(1): 514–524. doi: 10.1109/TGCN.2023.3306002.
|
[8] |
LI Ziwei, XU Han, LIU Zheyu, et al. A 2.17μW@120fps ultra-low-power dual-mode CMOS image sensor with senputing architecture[C]. 2022 27th Asia and South Pacific Design Automation Conference, Taipei, China, 2022: 92–93. doi: 10.1109/ASP-DAC52403.2022.9712591.
|
[9] |
PUVIRAJAN T, PAULRAJ R L, KULKARNI S, et al. 6T SRAM: A technical overview[C]. 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems, Bangalore, India, 2023: 698–702. doi: 10.1109/ICAECIS58353.2023.10170407. (查阅网上资料,请确认标黄作者是否正确).
|
[10] |
SINGH T, PRAKASH V, ANWER S S, et al. Analyzing the performance of 6T SRAM cell and 64×64 memory array at lower technology nodes for low power design[C]. 2023 1st International Conference on Circuits, Power and Intelligent Systems, Bhubaneswar, India, 2023: 1–6. doi: 10.1109/CCPIS59145.2023.10291492.
|
[11] |
YU Shimeng, JIANG Hongwu, HUANG Shanshi, et al. Compute-in-memory chips for deep learning: Recent trends and prospects[J]. IEEE Circuits and Systems Magazine, 2021, 21(3): 31–56. doi: 10.1109/MCAS.2021.3092533.
|
[12] |
MITTAL S and VETTER J S. A survey of software techniques for using non-volatile memories for storage and main memory systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(5): 1537–1550. doi: 10.1109/TPDS.2015.2442980.
|
[13] |
INCI A, ISGENC M M, and MARCULESCU D. DeepNVM++: Cross-layer modeling and optimization framework of nonvolatile memories for deep learning[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(10): 3426–3437. doi: 10.1109/TCAD.2021.3127148.
|
[14] |
RATHI N, KUMAR A, GUPTA N, et al. A review of low-power static random access memory (SRAM) designs[C]. 2023 IEEE Devices for Integrated Circuit, Kalyani, India, 2023: 455–459. doi: 10.1109/DevIC57758.2023.10134887.
|
[15] |
SIMON W A, LEVISSE A, ZAPATER M, et al. A hybrid cache HW/SW stack for optimizing neural network runtime, power and endurance[C]. 2020 IFIP/IEEE 28th International Conference on Very Large Scale Integration, Salt Lake City, USA, 2020: 94–99. doi: 10.1109/VLSI-SOC46417.2020.9344087.
|
[16] |
NAZEMIAN M and SAYEDI S M. Low power SRAM using an optimal number of split bit lines and single-ended sensing[C]. 2023 31st International Conference on Electrical Engineering, Tehran, Islamic Republic of Iran, 2023: 947–950. doi: 10.1109/ICEE59167.2023.10334788.
|
[17] |
NGUYEN D T, BHATTACHARJEE A, MOITRA A, et al. MCAIMem: A mixed SRAM and eDRAM cell for area and energy-efficient on-chip AI memory[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(11): 2023–2036. doi: 10.1109/TVLSI.2024.3439231.
|
[18] |
NAZHAMAITI M, JIANG Weihuang, SU Haijin, et al. Selfputing: A 0.57 μW @ 15 fps vision chip with self-powered in-pixel computing and in-memory computing for visual perception on the edge[C]. 2024 IEEE European Solid-State Electronics Research Conference, Bruges, Belgium, 2024: 585–588. doi: 10.1109/ESSERC62670.2024.10719556.
|
[19] |
COSEMANS S, DEHAENE W, and CATTHOOR F. A low-power embedded SRAM for wireless applications[J]. IEEE Journal of Solid-State Circuits, 2007, 42(7): 1607–1617. doi: 10.1109/JSSC.2007.896693.
|
[20] |
COSEMANS S, DEHAENE W, and CATTHOOR F. A 3.6pJ/access 480MHz, 128Kbit on-Chip SRAM with 850MHz boost mode in 90nm CMOS with tunable sense amplifiers to cope with variability[C]. 34th European Solid-State Circuits Conference, Edinburgh, UK, 2008: 278–281. doi: 10.1109/ESSCIRC.2008.4681846.
|
[21] |
CHEN Yuzong, MU Junjie, KIM H, et al. BP-SCIM: A reconfigurable 8T SRAM macro for bit-parallel searching and computing in-memory[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(5): 2016–2027. doi: 10.1109/TCSI.2023.3240303.
|