Citation: | LI Dawei, CHEN Tienan, ZHOU Yao, JIANG Xiaoping, WAN Meilin, ZHANG Li, HE Zhangqing. Generating Private Key of RSA Encryption Algorithm Using On-Chip Physical Unclonable Functions[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250382 |
[1] |
BURKHARDT J, DAMGÅRD I, FREDERIKSEN T K, et al. Improved distributed RSA key generation using the miller-Rabin test[C]. Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 2501–2515. doi: 10.1145/3576915.3623163.
|
[2] |
TYAGI N, FISCH B, ZITEK A, et al. VeRSA: Verifiable registries with efficient client audits from RSA authenticated dictionaries[C]. Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 2793–2807. doi: 10.1145/3548606.3560605.
|
[3] |
KEMMOE V Y and LYSYANSKAYA A. RSA-based dynamic accumulator without hashing into primes[C]. Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security, Salt Lake City, USA, 2024: 4271–4285. doi: 10.1145/3658644.3690199.
|
[4] |
DIMITROV V, VIGNERI L, and ATTIAS V. Fast generation of RSA keys using smooth integers[J]. IEEE Transactions on Computers, 2022, 71(7): 1575–1585. doi: 10.1109/TC.2021.3095669.
|
[5] |
REDDY S S, SINHA S, and ZHANG Wei. Design and analysis of RSA and paillier homomorphic cryptosystems using PSO-based evolutionary computation[J]. IEEE Transactions on Computers, 2023, 72(7): 1886–1900. doi: 10.1109/TC.2023.3234213.
|
[6] |
SALA R D, BELLIZIA D and SCOTTI G. Unveiling the true power of the latched ring oscillator for a unified PUF and TRNG architecture[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(12): 2403–2407. doi: 10.1109/TVLSI.2024.3448503.
|
[7] |
REN Qirui, HUO Qiang, CHEN Zhisheng, et al. A security-enhanced, charge-pump-free, ISO14443-A-/ISO10373–6-compliant RFID tag with 16.2-μW embedded RRAM and reconfigurable strong PUF[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2023, 31(2): 243–252. doi: 10.1109/TVLSI.2022.3222522.
|
[8] |
AGHAPOUR S, AHMADI K, ANASTASOVA M, et al. PUF-Kyber: Design of a PUF-Based Kyber architecture benchmarked on diverse ARM processors[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(12): 4453–4462. doi: 10.1109/TCAD.2024.3399669.
|
[9] |
LAO Yingjie and PARHI K K. Statistical analysis of MUX-based physical unclonable functions[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33(5): 649–662. doi: 10.1109/TCAD.2013.2296525.
|
[10] |
SAHOO D P, MUKHOPADHYAY D, CHAKRABORTY R S, et al. A multiplexer-based arbiter PUF composition with enhanced reliability and security[J]. IEEE Transactions on Computers, 2018, 67(3): 403–417. doi: 10.1109/TC.2017.2749226.
|
[11] |
USMANI M A, KESHAVARZ S, MATTHEWS E, et al. Efficient PUF-based key generation in FPGAs using per-device configuration[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27(2): 364–375. doi: 10.1109/TVLSI.2018.2877438.
|
[12] |
WAN Meilin, HE Zhangqing, HAN Shuang, et al. An invasive-attack-resistant PUF based on switched-capacitor circuit[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62(8): 2024–2034. doi: 10.1109/TCSI.2015.2440739.
|
[13] |
ZHANG Yin, HE Zhangqing, WAN Meilin, et al. A SC PUF standard cell used for key generation and anti-invasive-attack protection[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 3958–3973. doi: 10.1109/TIFS.2021.3089854.
|
[14] |
SHIEH M D, CHEN Junhong, WU H H, et al. A new modular exponentiation architecture for efficient design of RSA cryptosystem[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008, 16(9): 1151–1161. doi: 10.1109/TVLSI.2008.2000524.
|
[15] |
LIU Qiang, MA Fangzhen, TONG Dong, et al. A regular parallel RSA processor[C]. Proceedings of the 2004 47th Midwest Symposium on Circuits and Systems, Hiroshima, Japan, 2004: iii–467. doi: 10.1109/MWSCAS.2004.1354396.
|
[16] |
KWON T W, YOU C S, HEO W S, et al. Two implementation methods of a 1024-bit RSA cryptoprocessor based on modified Montgomery algorithm[C]. Proceedings of 2001 IEEE International Symposium on Circuits and Systems, Sydney, Australia, 2001: 650–653. doi: 10.1109/ISCAS.2001.922321.
|