高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向异构AIGC服务的通算存资源协同优化策略

吴梦如 高羽 赵波 徐波 孙浩 郭磊

吴梦如, 高羽, 赵波, 徐波, 孙浩, 郭磊. 面向异构AIGC服务的通算存资源协同优化策略[J]. 电子与信息学报. doi: 10.11999/JEIT251300
引用本文: 吴梦如, 高羽, 赵波, 徐波, 孙浩, 郭磊. 面向异构AIGC服务的通算存资源协同优化策略[J]. 电子与信息学报. doi: 10.11999/JEIT251300
WU Mengru, GAO Yu, ZHAO Bo, XU Bo, SUN Hao, GUO Lei. Communication, Computation, and Caching Resource Collaboration for Heterogeneous AIGC Service Provisioning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251300
Citation: WU Mengru, GAO Yu, ZHAO Bo, XU Bo, SUN Hao, GUO Lei. Communication, Computation, and Caching Resource Collaboration for Heterogeneous AIGC Service Provisioning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251300

面向异构AIGC服务的通算存资源协同优化策略

doi: 10.11999/JEIT251300 cstr: 32379.14.JEIT251300
基金项目: 国家自然科学基金(62301490, 62501480, U2441226),浙江省自然科学基金(LQ24F010013),四川省自然科学基金(2026NSFSC1433)
详细信息
    作者简介:

    吴梦如:女,副研究员,研究方向为移动边缘计算、无人机通信、物理层安全等

    高羽:女,硕士生,研究方向为移动边缘计算、深度学习等

    赵波:男,副教授,研究方向为网络空间安全治理、轻量化大模型技术等

    徐波:男,讲师,研究方向为移动边缘计算、大数据和分布式学习

    孙浩:男,博士后,研究方向为矩阵补全,张量分解以及生成式人工智能在通信信号处理领域的应用

    郭磊:男,教授,研究方向为光通信网络、无线通信网络

    通讯作者:

    赵波 bozhao@nwpu.edu.cn

  • 中图分类号: TN929.5

Communication, Computation, and Caching Resource Collaboration for Heterogeneous AIGC Service Provisioning

Funds: The National Natural Science Foundation of China (62301490, 62501480, U2441226), The Natural Science Foundation of Zhejiang Province (LQ24F010013), Sichuan Provincial Natural Science Foundation (2026NSFSC1433)
  • 摘要: 在智能物联网(Artificial Intelligence of Things, AIoT)中,边缘服务器可以通过利用存储的人工智能生成内容(AI-Generated Content, AIGC)模型向AIoT设备提供智能服务。然而,边缘服务器的计算能力和模型存储容量有限,难以支撑大规模的模型存储以实现异构AIGC服务。针对此问题,基于AIGC服务的异构性,将AIGC服务划分为请求轻量型、计算密集型以及预处理型三类,并提出了一种云边协同与边边协同相结合的通算存资源优化方案。该方案协同云计算与边缘计算的优势,在考虑边缘服务器计算和存储资源限制的基础上,联合优化AIoT设备和基站的发射功率、计算资源分配、AIGC模型部署及服务请求决策以最小化AIGC服务总时延。由于所构建的优化问题是一个混合整数非线性规划问题,因此设计了一种基于交替优化的算法,该算法将问题分解为三个子问题,并分别采用连续凸逼近方法、卡罗需-库恩-塔克条件和改进的哈里斯鹰算法进行求解。仿真结果表明,所提方案具有较快的收敛速度,并且与基准方案相比能够降低AIGC服务总时延。
  • 图  1  系统模型

    图  2  所提算法的收敛性

    图  3  传输带宽与AIGC服务总时延的关系

    图  4  BS缓存容量与AIGC服务总时延的关系

    图  5  单位比特所需FLOPs与AIGC服务总时延的关系

    图  6  BS最大发射功率与AIGC服务总时延的关系

    1  基于交替优化算法求解$ {\mathcal{P}}_{0} $

     初始化参数:$ {\boldsymbol{P}}^{(0)} $,$ {\boldsymbol{F}}^{(0)} $,$ {\boldsymbol{X}}^{(0)} $,$ {\boldsymbol{Y}}^{(0)} $,迭代次数$ l=1 $;定
     义最大迭代次数$ {L}_{\max } $
     (1) While $ l\leq {L}_{\max } $ do
     (2)  给定$ \boldsymbol{F}={\boldsymbol{F}}^{(l-1)} $, $ \boldsymbol{X}={\boldsymbol{X}}^{(l-1)} $, $ \boldsymbol{Y}={\boldsymbol{Y}}^{(l-1)} $,求解问
        题$ {\mathcal{P}}_{1} $获得发射功率$ {\boldsymbol{P}}^{(l)} $;
     (3)  给定$ \boldsymbol{P}={\boldsymbol{P}}^{(l)} $, $ \boldsymbol{X}={\boldsymbol{X}}^{(l-1)} $, $ \boldsymbol{Y}={\boldsymbol{Y}}^{(l-1)} $求解问题$ {\mathcal{P}}_{2} $
        获得计算资源分配$ {\boldsymbol{F}}^{(l)} $;
     (4)  给定$ \boldsymbol{P}={\boldsymbol{P}}^{(l)} $, $ \boldsymbol{F}={\boldsymbol{F}}^{(l)} $求解问题$ {\mathcal{P}}_{3} $获得AIGC模型部
        署决策$ {\boldsymbol{X}}^{(l)} $和服务请求决策$ {\boldsymbol{Y}}^{(l)} $;
     (5)  更新$ l=l+1 $;
     (6) End While: 收敛
    下载: 导出CSV
  • [1] LI Xiaoxiao, XIE Yong, PENG Cong, et al. EPREAR: An efficient attribute-based proxy re-encryption scheme with fast revocation for data sharing in AIoT[J]. IEEE Transactions on Mobile Computing, 2025, 24(10): 11005–11018. doi: 10.1109/TMC.2025.3573288.
    [2] WEN Jinbo, NIE Jiangtian, ZHONG Yue, et al. Diffusion-model-based incentive mechanism with prospect theory for edge AIGC services in 6G IoT[J]. IEEE Internet of Things Journal, 2024, 11(21): 34187–34201. doi: 10.1109/JIOT.2024.3445171.
    [3] LIU Yinqiu, DU Hongyang, NIYATO D, et al. ProSecutor: Protecting mobile AIGC services on two-layer blockchain via reputation and contract theoretic approaches[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 10966–10983. doi: 10.1109/TMC.2024.3390208.
    [4] 乔喆. 人工智能生成内容技术在内容安全治理领域的风险和对策[J]. 电信科学, 2023, 39(10): 136–146. doi: 10.11959/j.issn.1000−0801.2023190.

    QIAO Zhe. Risks and countermeasures of artificial intelligence generated content technology in content security governance[J]. Telecommunications Science, 2023, 39(10): 136–146. doi: 10.11959/j.issn.1000−0801.2023190.
    [5] WU Zijun, ZHANG Haijun, LIU Xiangnan, et al. IRS empowered MEC system with computation offloading, reflecting design, and beamforming optimization[J]. IEEE Transactions on Communications, 2024, 72(5): 3051–3063. doi: 10.1109/TCOMM.2024.3354197.
    [6] 陈健, 马天瑞, 杨龙, 等. 面向移动边缘计算的协作NOMA安全卸载能耗优化[J/OL]. 电子与信息学报, https://link.cnki.net/urlid/11.4494.TN.20251209.2144.002, 2025.

    CHEN Jian, MA Tianrui, YANG Long, et al. Energy consumption optimization of cooperative NOMA secure offload for mobile edge computing[J/OL]. Journal of Electronics & Information Technology, https://link.cnki.net/urlid/11.4494.TN.20251209.2144.002, 2025.
    [7] WU Mengru, CHEN Weijin, QIAN Liping, et al. Joint service caching and secure computation offloading for reconfigurable-intelligent-surface-assisted edge computing networks[J]. IEEE Internet of Things Journal, 2024, 11(19): 30469–30482. doi: 10.1109/JIOT.2024.3404972.
    [8] LIU Jian, XIAO Ming, WEN Jinbo, et al. Optimizing resource allocation for multi-modal semantic communication in mobile AIGC networks: A diffusion-based game approach[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(5): 3346–3360. doi: 10.1109/TCCN.2025.3529747.
    [9] 吴梦如, 孔亚威, 韩会梅, 等. 安全驱动的空地协同边缘计算网络中的服务缓存与计算卸载策略[J]. 通信学报, 2025, 46(7): 132–144. doi: 10.11959/j.issn.1000-436x.2025130.

    WU Mengru, KONG Yawei, HAN Huimei, et al. Security-driven service caching and computation offloading strategy in air-ground collaborative edge computing networks[J]. Journal on Communications, 2025, 46(7): 132–144. doi: 10.11959/j.issn.1000-436x.2025130.
    [10] WU Yinyu, ZHANG Xuhui, REN Jinke, et al. Latency-aware resource allocation for mobile edge generation and computing via deep reinforcement learning[J]. IEEE Networking Letters, 2024, 6(4): 237–241. doi: 10.1109/LNET.2024.3486194.
    [11] FENG Jie, HUANG Xinqi, LIU Lei, et al. Resource allocation for task-oriented generative artificial intelligence in internet of things[J]. IEEE Internet of Things Journal, 2025, 12(10): 13233–13247. doi: 10.1109/JIOT.2025.3542473.
    [12] DENG Tao, CHEN Dongyu, JIA Juncheng, et al. Optimizing resource allocation and request routing for AI-generated content (AIGC) services in mobile edge networks with cell coupling[J]. IEEE Transactions on Vehicular Technology, 2024, 73(11): 17911–17916. doi: 10.1109/TVT.2024.3421351.
    [13] WU Jiaqi, ZHUANG Xinyi, TANG Ming, et al. QoE-aware offloading and resource allocation for MEC-empowered AIGC services[J]. IEEE Transactions on Mobile Computing, 2025, 24(10): 9664–9682. doi: 10.1109/TMC.2025.3563027.
    [14] XU Ding, DUAN Lingjie, and ZHU Hongbo. AIGC-enhanced hybrid content caching in wireless networks[J]. IEEE Transactions on Wireless Communications, 2025, 24(8): 6780–6796. doi: 10.1109/TWC.2025.3556118.
    [15] ZHANG Xingxing, LI Shaobo, TANG Jianhang, et al. DRL-enabled computation offloading for AIGC services in IIoT-assisted edge computing networks[J]. IEEE Internet of Things Journal, 2025, 12(9): 12829–12844. doi: 10.1109/JIOT.2024.3523919.
    [16] FENG Weijia, ZHANG Ruojia, ZHU Yichen, et al. Exploring collaborative diffusion model inferring for AIGC-enabled edge services[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(2): 946–960. doi: 10.1109/TCCN.2024.3519320.
    [17] LI Zhiyang, CHEN Ming, CHEN Jinli, et al. Delay efficient caching enabled hierarchical mobile edge computing networks[J]. IEEE Transactions on Communications, 2025, 73(10): 9087–9101. doi: 10.1109/TCOMM.2025.3562526.
    [18] 徐勇军, 符加劲, 黄琼, 等. 智能反射面辅助的多天线通信系统鲁棒安全资源分配算法[J]. 电子与信息学报, 2024, 46(1): 165–174. doi: 10.11999/JEIT221554.

    XU Yongjun, FU Jiajin, HUANG Qiong, et al. Robust secure resource allocation algorithm for intelligent reflecting surface-assisted multi-antenna communication systems[J]. Journal of Electronics & Information Technology, 2024, 46(1): 165–174. doi: 10.11999/JEIT221554.
    [19] ALI A, SHAH S A A, AL SHLOUL T, et al. Multiobjective harris hawks optimization-based task scheduling in cloud-fog computing[J]. IEEE Internet of Things Journal, 2024, 11(13): 24334–24352. doi: 10.1109/JIOT.2024.3391024.
    [20] HUANG Xietian, XU Wei, XIE Guo, et al. Learning oriented cross-entropy approach to user association in load-balanced HetNet[J]. IEEE Wireless Communications Letters, 2018, 7(6): 1014–1017. doi: 10.1109/LWC.2018.2846610.
    [21] JIANG Feibo, WANG Kezhi, DONG Li, et al. Deep-learning-based joint resource scheduling algorithms for hybrid MEC networks[J]. IEEE Internet of Things Journal, 2020, 7(7): 6252–6265. doi: 10.1109/JIOT.2019.2954503.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  9
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-26
  • 录用日期:  2026-01-26
  • 网络出版日期:  2026-02-02

目录

    /

    返回文章
    返回