高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

精确饱和模型引导的SAR饱和干扰抑制方法

段伦豪 陆星宇 谭珂 刘宇双 杨建超 余静 顾红

段伦豪, 陆星宇, 谭珂, 刘宇双, 杨建超, 余静, 顾红. 精确饱和模型引导的SAR饱和干扰抑制方法[J]. 电子与信息学报. doi: 10.11999/JEIT251283
引用本文: 段伦豪, 陆星宇, 谭珂, 刘宇双, 杨建超, 余静, 顾红. 精确饱和模型引导的SAR饱和干扰抑制方法[J]. 电子与信息学报. doi: 10.11999/JEIT251283
DUAN Lunhao, LU Xingyu, TAN Ke, LIU Yushuang, YANG Jianchao, YU Jing, GU Hong. SAR Saturated Interference Suppression Method Guided by Precise Saturation Model[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251283
Citation: DUAN Lunhao, LU Xingyu, TAN Ke, LIU Yushuang, YANG Jianchao, YU Jing, GU Hong. SAR Saturated Interference Suppression Method Guided by Precise Saturation Model[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251283

精确饱和模型引导的SAR饱和干扰抑制方法

doi: 10.11999/JEIT251283 cstr: 32379.14.JEIT251283
基金项目: 国家自然科学基金(62101260, 62001229, 62101264)
详细信息
    作者简介:

    段伦豪:男,博士生,研究方向为SAR干扰抑制以及干扰检测

    陆星宇:男,副教授,研究方向为SAR干扰抑制,SAR辐射源定位以及SAR干扰检测

    谭珂:女,副教授,研究方向为雷达前视成像与雷达信号处理

    刘宇双:女,硕士生,研究方向为SAR干扰抑制

    杨建超:男,副教授,研究方向为雷达成像与MIMO雷达信号处理

    余静:女,硕士生,研究方向为SAR干扰信号参数估计

    顾红:男,教授,研究方向为雷达信号处理

    通讯作者:

    谭珂 tank@njust.edu.cn

  • 中图分类号: TN974

SAR Saturated Interference Suppression Method Guided by Precise Saturation Model

Funds: National Natural Science Foundation of China (62101260, 62001229, 62101264)
  • 摘要: 合成孔径雷达(SAR)极易受到射频干扰(RFI)的影响。相关学者针对SAR干扰抑制已经开展了深入的研究,并提出了一系列干扰抑制算法。然而,目前大多数算法并未考虑到SAR接收机发生饱和的影响。实际上,当干扰功率较大时,SAR接收机非常容易发生饱和,使受干扰回波产生非线性畸变,导致饱和干扰与当前干扰抑制算法的模型失配。目前仍缺少能够精确描述饱和受干扰回波特性的数学模型以及饱和干扰抑制方法。为此,该文首先提出了精确饱和干扰分析模型,并验证了该模型在分析饱和干扰幅相信息时的准确性。基于该模型,提出了一种能有效缓解饱和干扰的抑制方法。首先,基于干扰基波大功率特性通过特征子空间分解来提取基波;然后,利用谐波与基波的相位关系,构建涵盖目标回波、干扰基波、干扰谐波以及互调谐波的综合完备字典;最后求解稀疏优化问题,完成饱和干扰的分离与抑制。通过实测数据验证,并与其他抑制方法进行对比,验证了所提方法在应对饱和干扰时的有效性。
  • 图  1  星载SAR实测受饱和干扰案例

    图  2  饱和前后仿真结果 图3 谐波对消结果

    图  3  谐波对消结果

    图  4  实验结果

    图  5  饱和干扰抑制流程图

    图  6  收敛效率曲线

    图  7  基于不同干扰抑制算法的结果对比

    图  8  饱和干扰处理结果分析(LFM干扰实验)

    图  9  饱和干扰处理结果分析(NFM干扰实验)

    图  10  实测数据验证结果

    图  11  实测数据处理结果对比

    表  1  实验参数设置

    参数名称参数值目标参数名称参数值干扰参数名称参数值
    雷达工作频率5GHz信号形式线性调频信号信号形式噪声调频信号
    系统采样率40MHz脉宽10 $ \text{μs} $脉宽10 $ \text{μs} $
    系统ADC位数16bit带宽2 MHz带宽3 MHz
    中心频率0MHz中心频率0MHz
    下载: 导出CSV

    表  2  仿真实验参数设置

    参数名称参数值参数名称参数值参数名称参数值
    雷达工作频率5.300 GHzLFM干扰载频5.297GHzNFM干扰载频5.310GHz
    系统采样率32.317 MHzLFM干扰脉宽11 $ \text{μs} $NFM干扰脉宽9 $ \text{μs} $
    脉冲重复频率1256.98 HzLFM干扰带宽3 MHzNFM干扰带宽10 MHz
    发射信号带宽30.116 MHz饱和系数0.8饱和系数0.6
    下载: 导出CSV

    表  3  不同干扰抑制方法指标对比

    干扰类型指标所提方法改进的ESP方法时频陷波方法传统饱和干扰抑制方法
    LFM干扰TBR(dB)11.59139.82828.626410.1765
    RMSE0.07830.12820.16880.1304
    ISR0.77360.76880.76400.7673
    NFM干扰TBR(dB)9.94708.17463.55803.5839
    RMSE0.11870.18580.45100.4190
    ISR0.70280.69390.64970.6563
    下载: 导出CSV

    表  4  不同干扰抑制方法指标对比

    指标所提方法改进的ESP方法时频陷波方法传统饱和干扰抑制方法
    ISR0.08730.08180.07630.0794
    下载: 导出CSV
  • [1] 黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.

    HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
    [2] SHEN Yan, WANG Yuming, MA Liyun, et al. Research on simulation method for nonlinear effects of airborne SAR electromagnetic interference[J]. AIP Advances, 2023, 13(10): 105002. doi: 10.1063/5.0157444.
    [3] CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217319. doi: 10.1109/TGRS.2023.3310613.
    [4] 李东, 占木杨, 方志平, 等. 基于HAF的参数化SAR宽带干扰抑制[J]. 系统工程与电子技术, 2017, 39(3): 514–521. doi: 10.3969/j.issn.1001-506X.2017.03.09.

    LI Dong, ZHAN Muyang, FANG Zhiping, et al. Parameterized wideband interference suppression for SAR imaging based on HAF[J]. Systems Engineering and Electronics, 2017, 39(3): 514–521. doi: 10.3969/j.issn.1001-506X.2017.03.09.
    [5] LIU Zhiling, LIAO Guisheng, and YANG Zhiwei. Time variant RFI suppression for SAR using iterative adaptive approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1424–1428. doi: 10.1109/LGRS.2013.2259575.
    [6] TAO Mingliang, ZHOU Feng, and ZHANG Zijing. Wideband interference mitigation in high-resolution airborne synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 74–87. doi: 10.1109/TGRS.2015.2450754.
    [7] ZHAO Tengfei, ZHANG Yongsheng, YANG Lin, et al. The RFI suppression method based on Stft applied to SAR[J]. Progress in Electromagnetics Research M, 2013, 31: 171–188. doi: 10.2528/PIERM13050113.
    [8] HAN Wenchang and ZHOU Feng. SAR wideband interference suppression method using second-order multisynchrosqueezing transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230215. doi: 10.1109/TGRS.2022.3184945.
    [9] FENG Jin, ZHENG Huifang, DENG Yunkai, et al. Application of subband spectral cancellation for SAR narrow-band interference suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 190–193. doi: 10.1109/LGRS.2011.2163150.
    [10] 舒高峰, 刘明月, 李宁. 采用改进特征子空间投影的SAR脉冲式直达波干扰抑制方法[J]. 电子与信息学报, 2024, 46(4): 1382–1390. doi: 10.11999/JEIT230665.

    SHU Gaofeng, LIU Mingyue, and LI Ning. SAR pulsed direct wave interference suppression method using improved Eigen-subspace projection[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1382–1390. doi: 10.11999/JEIT230665.
    [11] 周峰, 邢孟道, 保铮. 基于特征子空间滤波的SAR窄带干扰抑制方法[J]. 电子与信息学报, 2005, 27(5): 767–770.

    ZHOU Feng, XING Mengdao, and BAO Zheng. Narrow band interference suppression for SAR using Eigen-subspace based filtering[J]. Journal of Electronics & Information Technology, 2005, 27(5): 767–770.
    [12] NGUYEN L H and TRAN T D. Efficient and robust RFI extraction via sparse recovery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2104–2117. doi: 10.1109/JSTARS.2016.2528884.
    [13] SU Jia, TAO Hailong, TAO Mingliang, et al. Narrow-band interference suppression via RPCA-based signal separation in time–frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 5016–5025. doi: 10.1109/JSTARS.2017.2727520.
    [14] CHEN Xuezhi, HUANG Yan, YU Xutao, et al. A RFI mitigation approach for spaceborne SAR using homologous interference knowledge at coastal regions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 5990–6006. doi: 10.1109/JSTARS.2025.3530473.
    [15] ZHAO Jiayi, YUE Yaxing, ZHANG Xuepan, et al. A joint framework of wavelet filtering and fast GSVT-LRSD algorithm for SAR narrowband pulsed RFI suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5216316. doi: 10.1109/TGRS.2025.3587054.
    [16] 韩朝赟, 岑熙, 崔嘉禾, 等. 纹理异常感知SAR自监督学习干扰抑制方法[J]. 雷达学报, 2023, 12(1): 154–172. doi: 10.12000/JR22168.

    HAN Zhaoyun, CEN Xi, CUI Jiahe, et al. Self-supervised learning method for SAR interference suppression based on abnormal texture perception[J]. Journal of Radars, 2023, 12(1): 154–172. doi: 10.12000/JR22168.
    [17] FAN Weiwei, TIAN Tian, WANG Siyao, et al. AMDIS-Net: A multiple attention mechanism based deep dense interference suppression network for Sentinel-1 SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(6): 16869–16887. doi: 10.1109/TAES.2025.3601099.
    [18] WEI Shunjun, ZHANG Hao, ZENG Xiangfeng, et al. CARNet: An effective method for SAR image interference suppression[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103019. doi: 10.1016/j.jag.2022.103019.
    [19] SHEN Jiayuan, HAN Bing, SUN Xian, et al. A lightweight network for radio frequency interference suppression in SAR amplitude images using matrix representation and decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5216718. doi: 10.1109/TGRS.2025.3591388.
    [20] CEN Xi, LI Yachao, HAN Zhaoyun, et al. Self-supervised learning method for SAR multiinterference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220017. doi: 10.1109/TGRS.2023.3328019.
    [21] ZHENG Fenghao, ZHANG Zhongmin, and ZHANG Kexin. Prior knowledge constraints network (PKCNet) for synthetic aperture radar pulse radio frequency interference suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4007105. doi: 10.1109/LGRS.2024.3380675.
    [22] LOU Mingyue, AN Hongyang, ZUO Haowen, et al. Feature-enhanced low-rank and sparse decomposition network for SAR RFI suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5210517. doi: 10.1109/TGRS.2025.3564509.
    [23] LI Zhou, LI Chunsheng, YU Ze, et al. Effects of receiver saturation on image formation[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 535–538. doi: 10.1109/IGARSS.2011.6049183.
    [24] XIAO Peng, LIU Min, GUO Wei, et al. Reconstruction of synthetic aperture radar raw data under analog-to-digital converter saturation distortion for large dynamic range scenes[J]. Remote Sensing, 2019, 11(9): 1043. doi: 10.3390/rs11091043.
    [25] ZHAO Bo, HUANG Lei, and BAO Weimin. One-bit SAR imaging based on single-frequency thresholds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7017–7032. doi: 10.1109/TGRS.2019.2910284.
    [26] DUAN Lunhao, LU Xingyu, YANG Jianchao, et al. Saturated interference in SAR: Theoretical analysis and suppression solutions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 9244–9261. doi: 10.1109/JSTARS.2025.3554199.
    [27] 邢家省, 张愿章. 应用傅里叶级数展开定理证明推广的黎曼—勒贝格引理[J]. 河南科学, 2013, 31(3): 253–257. doi: 10.13537/j.issn.1004-3918.2013.03.029.

    XING Jiasheng and ZHANG Yuanzhang. The proof of generalized Riemann-Lebesgue Lemma by using Fourier series expansion theory[J]. Henan Science, 2013, 31(3): 253–257. doi: 10.13537/j.issn.1004-3918.2013.03.029.
    [28] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-12-03
  • 修回日期:  2026-01-30
  • 录用日期:  2026-01-30
  • 网络出版日期:  2026-02-14

目录

    /

    返回文章
    返回