SAR Saturated Interference Suppression Method Guided by Precise Saturation Model
-
摘要: 合成孔径雷达(SAR)极易受到射频干扰(RFI)的影响。相关学者针对SAR干扰抑制已经开展了深入的研究,并提出了一系列干扰抑制算法。然而,目前大多数算法并未考虑到SAR接收机发生饱和的影响。实际上,当干扰功率较大时,SAR接收机非常容易发生饱和,使受干扰回波产生非线性畸变,导致饱和干扰与当前干扰抑制算法的模型失配。目前仍缺少能够精确描述饱和受干扰回波特性的数学模型以及饱和干扰抑制方法。为此,该文首先提出了精确饱和干扰分析模型,并验证了该模型在分析饱和干扰幅相信息时的准确性。基于该模型,提出了一种能有效缓解饱和干扰的抑制方法。首先,基于干扰基波大功率特性通过特征子空间分解来提取基波;然后,利用谐波与基波的相位关系,构建涵盖目标回波、干扰基波、干扰谐波以及互调谐波的综合完备字典;最后求解稀疏优化问题,完成饱和干扰的分离与抑制。通过实测数据验证,并与其他抑制方法进行对比,验证了所提方法在应对饱和干扰时的有效性。Abstract:
Objective With the increasing number of electromagnetic devices, Synthetic Aperture Radar (SAR) is highly vulnerable to Radio Frequency Interference (RFI) in the same frequency band. RFI will appear as bright streaks in SAR images, seriously degrading the image quality. Currently, relevant scholars have conducted in-depth research on interference suppression and proposed many effective interference suppression methods. However, most methods fail to consider the nonlinear saturation of interfered echoes. In practical scenarios, due to the generally high power of interference, the gain controller in the SAR receiver struggles to effectively adjust the amplitude of the interfered echoes. This causes the input signal amplitude of the Analog-to-Digital Converter (ADC) to exceed its dynamic range, thus driving the SAR receiver into saturation and eventually leading to nonlinear distortion in the interfered echoes. This phenomenon is commonly observed in SAR systems, with documented cases of receiver saturation in the LuTan-1 satellite and various airborne SAR platforms. Analysis of SAR data further confirms the presence of saturated interference in systems including Sentinel-1, Gaofen-3, and several other spaceborne SAR platforms. Following saturation, the echo spectrum exhibits various spurious components and spectral artifacts, which leads to a mismatch between existing suppression methods and the actual characteristics of saturated interference. Therefore, some of the existing interference suppression methods have difficulty effectively mitigating this type of saturated interference. Moreover, there is currently a lack of accurate models capable of precisely characterizing the output components of saturated interfered echoes. To address these issues, this paper introduces a precise saturated interference analytical model and, based on this model, further proposes an effective saturated interference suppression method. Methods Through the processing of the basic saturation model, this paper first establishes a mathematical model capable of accurately characterizing the output components of saturated interference. Furthermore, the model's accuracy in amplitude and phase characterization was validated through simulation, and a comprehensive analysis was conducted on various output components of the interfered echoes under saturation conditions. Compared with the one-bit sampling model and the traditional tanh saturation model, the model proposed achieves higher accuracy in describing amplitude information. In addition, it is not limited to the sampling bit width of ADCs and can theoretically be extended to the saturation output description of other types of radar receivers. Based on the finding that harmonic phases can be expressed as a linear combination of the phases of the original signal components, and leveraging the high-power characteristic of the interference fundamental harmonic, a saturated interference suppression method is proposed. First, given the relatively high power of the interference fundamental harmonic, it can be effectively extracted through eigen-subspace decomposition; then, by leveraging the harmonic phase relationships together with the extracted interference fundamental harmonic and the SAR transmitted signal, interference harmonics—including higher-order interference harmonics, target harmonics, and intermodulation harmonics—are systematically constructed, thus forming a complete dictionary; finally, a sparse optimization problem is solved to achieve the separation and suppression of saturated interference. The superiority and effectiveness of the proposed method are validated using Gaofen-3 measured data. Results and Discussions This paper conducted experiments on both simulated and measured data to validate the effectiveness of the proposed method in mitigating saturated interference. For the simulated data, the proposed method completely removes interference stripes in the SAR image ( Fig. 7 ). Analysis of the time-frequency spectrum of the processed echoes (Fig. 8 andFig. 9 ) shows that traditional methods struggle to eliminate higher-order harmonics. As a result, the proposed approach improves the TBR by 1.76 dB and achieves the lowest RMSE of0.0783 (Table 3 ). For the measured data from Gaofen-3, analysis of the processed images and time-frequency spectra of echoes confirms the proposed method's effective interference suppression capability, whereas conventional approaches consistently exhibit residual interference issues (Fig. 10 andFig. 11 ).Conclusions With the increasing deployment of electromagnetic devices, SAR has become highly susceptible to in-band interference. Furthermore, high-power interference can easily drive the SAR receiver into saturation, resulting in nonlinear distortion that renders traditional interference suppression methods ineffective against saturated interference. To address this challenge, this paper establishes a model capable of precisely characterizing the saturated output components of interfered echoes. Based on this model, an interference suppression method capable of effectively dealing with saturated interference is proposed. Simulation and experiment demonstrate that the model accurately characterizes saturation behavior and that the method effectively suppresses saturated interference. -
表 1 实验参数设置
参数名称 参数值 目标参数名称 参数值 干扰参数名称 参数值 雷达工作频率 5GHz 信号形式 线性调频信号 信号形式 噪声调频信号 系统采样率 40MHz 脉宽 10 $ \text{μs} $ 脉宽 10 $ \text{μs} $ 系统ADC位数 16bit 带宽 2 MHz 带宽 3 MHz 中心频率 0MHz 中心频率 0MHz 表 2 仿真实验参数设置
参数名称 参数值 参数名称 参数值 参数名称 参数值 雷达工作频率 5.300 GHz LFM干扰载频 5.297GHz NFM干扰载频 5.310GHz 系统采样率 32.317 MHz LFM干扰脉宽 11 $ \text{μs} $ NFM干扰脉宽 9 $ \text{μs} $ 脉冲重复频率 1256.98 HzLFM干扰带宽 3 MHz NFM干扰带宽 10 MHz 发射信号带宽 30.116 MHz 饱和系数 0.8 饱和系数 0.6 表 3 不同干扰抑制方法指标对比
干扰类型 指标 所提方法 改进的ESP方法 时频陷波方法 传统饱和干扰抑制方法 LFM干扰 TBR(dB) 11.5913 9.8282 8.6264 10.1765 RMSE 0.0783 0.1282 0.1688 0.1304 ISR 0.7736 0.7688 0.7640 0.7673 NFM干扰 TBR(dB) 9.9470 8.1746 3.5580 3.5839 RMSE 0.1187 0.1858 0.4510 0.4190 ISR 0.7028 0.6939 0.6497 0.6563 表 4 不同干扰抑制方法指标对比
指标 所提方法 改进的ESP方法 时频陷波方法 传统饱和干扰抑制方法 ISR 0.0873 0.0818 0.0763 0.0794 -
[1] 黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113. [2] SHEN Yan, WANG Yuming, MA Liyun, et al. Research on simulation method for nonlinear effects of airborne SAR electromagnetic interference[J]. AIP Advances, 2023, 13(10): 105002. doi: 10.1063/5.0157444. [3] CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217319. doi: 10.1109/TGRS.2023.3310613. [4] 李东, 占木杨, 方志平, 等. 基于HAF的参数化SAR宽带干扰抑制[J]. 系统工程与电子技术, 2017, 39(3): 514–521. doi: 10.3969/j.issn.1001-506X.2017.03.09.LI Dong, ZHAN Muyang, FANG Zhiping, et al. Parameterized wideband interference suppression for SAR imaging based on HAF[J]. Systems Engineering and Electronics, 2017, 39(3): 514–521. doi: 10.3969/j.issn.1001-506X.2017.03.09. [5] LIU Zhiling, LIAO Guisheng, and YANG Zhiwei. Time variant RFI suppression for SAR using iterative adaptive approach[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1424–1428. doi: 10.1109/LGRS.2013.2259575. [6] TAO Mingliang, ZHOU Feng, and ZHANG Zijing. Wideband interference mitigation in high-resolution airborne synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 74–87. doi: 10.1109/TGRS.2015.2450754. [7] ZHAO Tengfei, ZHANG Yongsheng, YANG Lin, et al. The RFI suppression method based on Stft applied to SAR[J]. Progress in Electromagnetics Research M, 2013, 31: 171–188. doi: 10.2528/PIERM13050113. [8] HAN Wenchang and ZHOU Feng. SAR wideband interference suppression method using second-order multisynchrosqueezing transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5230215. doi: 10.1109/TGRS.2022.3184945. [9] FENG Jin, ZHENG Huifang, DENG Yunkai, et al. Application of subband spectral cancellation for SAR narrow-band interference suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 190–193. doi: 10.1109/LGRS.2011.2163150. [10] 舒高峰, 刘明月, 李宁. 采用改进特征子空间投影的SAR脉冲式直达波干扰抑制方法[J]. 电子与信息学报, 2024, 46(4): 1382–1390. doi: 10.11999/JEIT230665.SHU Gaofeng, LIU Mingyue, and LI Ning. SAR pulsed direct wave interference suppression method using improved Eigen-subspace projection[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1382–1390. doi: 10.11999/JEIT230665. [11] 周峰, 邢孟道, 保铮. 基于特征子空间滤波的SAR窄带干扰抑制方法[J]. 电子与信息学报, 2005, 27(5): 767–770.ZHOU Feng, XING Mengdao, and BAO Zheng. Narrow band interference suppression for SAR using Eigen-subspace based filtering[J]. Journal of Electronics & Information Technology, 2005, 27(5): 767–770. [12] NGUYEN L H and TRAN T D. Efficient and robust RFI extraction via sparse recovery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2104–2117. doi: 10.1109/JSTARS.2016.2528884. [13] SU Jia, TAO Hailong, TAO Mingliang, et al. Narrow-band interference suppression via RPCA-based signal separation in time–frequency domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(11): 5016–5025. doi: 10.1109/JSTARS.2017.2727520. [14] CHEN Xuezhi, HUANG Yan, YU Xutao, et al. A RFI mitigation approach for spaceborne SAR using homologous interference knowledge at coastal regions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 5990–6006. doi: 10.1109/JSTARS.2025.3530473. [15] ZHAO Jiayi, YUE Yaxing, ZHANG Xuepan, et al. A joint framework of wavelet filtering and fast GSVT-LRSD algorithm for SAR narrowband pulsed RFI suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5216316. doi: 10.1109/TGRS.2025.3587054. [16] 韩朝赟, 岑熙, 崔嘉禾, 等. 纹理异常感知SAR自监督学习干扰抑制方法[J]. 雷达学报, 2023, 12(1): 154–172. doi: 10.12000/JR22168.HAN Zhaoyun, CEN Xi, CUI Jiahe, et al. Self-supervised learning method for SAR interference suppression based on abnormal texture perception[J]. Journal of Radars, 2023, 12(1): 154–172. doi: 10.12000/JR22168. [17] FAN Weiwei, TIAN Tian, WANG Siyao, et al. AMDIS-Net: A multiple attention mechanism based deep dense interference suppression network for Sentinel-1 SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(6): 16869–16887. doi: 10.1109/TAES.2025.3601099. [18] WEI Shunjun, ZHANG Hao, ZENG Xiangfeng, et al. CARNet: An effective method for SAR image interference suppression[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103019. doi: 10.1016/j.jag.2022.103019. [19] SHEN Jiayuan, HAN Bing, SUN Xian, et al. A lightweight network for radio frequency interference suppression in SAR amplitude images using matrix representation and decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5216718. doi: 10.1109/TGRS.2025.3591388. [20] CEN Xi, LI Yachao, HAN Zhaoyun, et al. Self-supervised learning method for SAR multiinterference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220017. doi: 10.1109/TGRS.2023.3328019. [21] ZHENG Fenghao, ZHANG Zhongmin, and ZHANG Kexin. Prior knowledge constraints network (PKCNet) for synthetic aperture radar pulse radio frequency interference suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4007105. doi: 10.1109/LGRS.2024.3380675. [22] LOU Mingyue, AN Hongyang, ZUO Haowen, et al. Feature-enhanced low-rank and sparse decomposition network for SAR RFI suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5210517. doi: 10.1109/TGRS.2025.3564509. [23] LI Zhou, LI Chunsheng, YU Ze, et al. Effects of receiver saturation on image formation[C]. IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 535–538. doi: 10.1109/IGARSS.2011.6049183. [24] XIAO Peng, LIU Min, GUO Wei, et al. Reconstruction of synthetic aperture radar raw data under analog-to-digital converter saturation distortion for large dynamic range scenes[J]. Remote Sensing, 2019, 11(9): 1043. doi: 10.3390/rs11091043. [25] ZHAO Bo, HUANG Lei, and BAO Weimin. One-bit SAR imaging based on single-frequency thresholds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7017–7032. doi: 10.1109/TGRS.2019.2910284. [26] DUAN Lunhao, LU Xingyu, YANG Jianchao, et al. Saturated interference in SAR: Theoretical analysis and suppression solutions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 9244–9261. doi: 10.1109/JSTARS.2025.3554199. [27] 邢家省, 张愿章. 应用傅里叶级数展开定理证明推广的黎曼—勒贝格引理[J]. 河南科学, 2013, 31(3): 253–257. doi: 10.13537/j.issn.1004-3918.2013.03.029.XING Jiasheng and ZHANG Yuanzhang. The proof of generalized Riemann-Lebesgue Lemma by using Fourier series expansion theory[J]. Henan Science, 2013, 31(3): 253–257. doi: 10.13537/j.issn.1004-3918.2013.03.029. [28] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016. -
下载:
下载: