高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种微型化SSVEP脑机接口系统

蔡雨 王俊洋 姜传力 罗睿心 吕正超 于海情 黄永志 钟子平 许敏鹏

蔡雨, 王俊洋, 姜传力, 罗睿心, 吕正超, 于海情, 黄永志, 钟子平, 许敏鹏. 一种微型化SSVEP脑机接口系统[J]. 电子与信息学报. doi: 10.11999/JEIT251223
引用本文: 蔡雨, 王俊洋, 姜传力, 罗睿心, 吕正超, 于海情, 黄永志, 钟子平, 许敏鹏. 一种微型化SSVEP脑机接口系统[J]. 电子与信息学报. doi: 10.11999/JEIT251223
CAI Yu, WANG Junyang, JIANG Chuanli, LUO Ruixin, LV Zhengchao, YU Haiqing, HUANG Yongzhi, JUNG Tzyy-Ping, XU Minpeng. A Miniaturized SSVEP Brain-Computer Interface System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251223
Citation: CAI Yu, WANG Junyang, JIANG Chuanli, LUO Ruixin, LV Zhengchao, YU Haiqing, HUANG Yongzhi, JUNG Tzyy-Ping, XU Minpeng. A Miniaturized SSVEP Brain-Computer Interface System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251223

一种微型化SSVEP脑机接口系统

doi: 10.11999/JEIT251223 cstr: 32379.14.JEIT251223
基金项目: 国家重点研发计划(项目编号:2023YFF1203701)
详细信息
    作者简介:

    蔡雨:男,博士生,研究方向为脑机接口硬件

    王俊洋:男,博士生,研究方向为脑机接口

    姜传力:男,博士生,研究方向为脑机接口硬件

    罗睿心:女,博士生,研究方向为脑机接口

    吕正超:男,博士生,研究方向为脑机接口硬件

    于海情:女,正高级工程师,研究方向为脑-机接口、神经信号处理、脑际神经科学

    黄永志:男,英才副教授,研究方向为神经信号处理、脑机接口、侵入式神经调控技术

    钟子平:男,教授,研究方向为脑机接口

    许敏鹏:男,讲席教授,研究方向为脑机接口、神经信号处理和神经调控

    通讯作者:

    许敏鹏 xmp52637@tju.edu.cn

  • 中图分类号: R741.044

A Miniaturized SSVEP Brain-Computer Interface System

Funds: National Key Research and Development Program of China (Grant No. 2023YFF1203701)
  • 摘要: 脑机接口(Brain-Computer Interface, BCI)正从实验室走向日常应用,其发展的核心瓶颈在于如何在不依赖笨重设备和同步线缆的前提下,实现高性能的脑电采集。现有无线系统难以在同步精度与系统微型化、无硬件束缚之间取得兼顾。为此,该文研制了一种采集端微型化且无需同步线缆的稳态视觉诱发电位(Steady-State Visual Evoked Potential, SSVEP)脑机接口系统。该系统采用分布式微型节点架构,将重量仅3.7 g、体积仅为3.05 cm3的微型采集节点隐蔽佩戴于头发间。在无需专用同步硬件、仅使用少量电极、且在非屏蔽普通室内环境下,搭建了40指令的在线SSVEP解码系统。结果显示,系统达到了(95.00±2.04)%的识别准确率与(147.24±30.52) bits/min的峰值信息传输速率。该研究为开发真正可穿戴的下一代脑机接口提供了可行的系统级解决方案。
  • 图  1  系统硬件架构图

    图  8  SSVEP-BCI系统采集设备图

    图  2  同步方法时序流程图

    图  3  性能测试系统结构框图

    图  4  一主多从架构下各设备事件标记误差分布与累积分布函数

    图  5  6名受试者4导联平均后的10 Hz SSVEP响应特性

    图  6  40指令SSVEP跨受试者平均信噪比

    图  7  40指令SSVEP跨受试者平均解码性能

    表  1  不同SSVEP-BCI系统的性能对比

    序号 研究 设备 体积(cm3);重量(g) 输入噪声
    (μVpp)
    同步方式/精度(ms) 指令数 使用电极数量(个) 算法:ITR(bits/min)(峰值时间(s));正确率(%)(样本时长(s))
    1 文献[6] Synamps2
    商用台式
    体积834;重量1500
    (仅头盒)
    0.5 TTL/- 40 9(64导) CCA:267(0.5 s);
    91.04%(0.5 s)
    2 文献[18] ESPW308
    商用便携式
    -/- - 未提及/- 40 4 OACCA:98.46(1.4 s);
    91.40%(3.0 s)
    3 文献[19] LinkMeR
    商用便携式
    体积-;重量75(仅采集
    主机)
    - 未提及/<1 9 8 FBCCA:47.01(2.0 s);
    82.22%(3.0 s)
    4 文献[20] iRecorder W8
    商用便携式
    体积116;重量110
    (仅采集主机)
    <1 额外硬件/≤1 48 8 FBCCA-C:126.11(1.6 s);
    85.49%(3 s)
    5 本研究 自研
    隐蔽式
    体积12.2;重量16.3(4个采集设备+参考电极) 3.91 无线/≤1 40 4(可扩展8) eTRCA:147.24(0.4 s);
    95.00%(3.0 s)
    注:对比设备的体积与重量数据为其采集主机参数,未包含电极、脑电帽等佩戴套件;本研究数据为四个采集从设备与参考电极的总和。
    下载: 导出CSV
  • [1] LIU Yingjie, ZHANG Ye, ZHONG Yifei, et al. Favoritism or bias? Cooperation and competition under different intergroup relationships: Evidence from EEG hyperscanning[J]. Cerebral Cortex, 2024, 34(4): bhae131. doi: 10.1093/cercor/bhae131.
    [2] CAROLLO A and ESPOSITO G. Hyperscanning literature after two decades of neuroscientific research: A scientometric review[J]. Neuroscience, 2024, 551: 345–354. doi: 10.1016/j.neuroscience.2024.05.045.
    [3] 张力新, 周鸿展, 王东, 等. 脑机接口中脑电图-近红外光谱联合分析进展研究[J]. 电子与信息学报, 2024, 46(3): 790–797. doi: 10.11999/JEIT230257.

    ZHANG Lixin, ZHOU Hongzhan, WANG Dong, et al. Research progress of electroencephalography-near-infrared spectroscopy combined analysis in brain-computer interface[J]. Journal of Electronics & Information Technology, 2024, 46(3): 790–797. doi: 10.11999/JEIT230257.
    [4] MIHAJLOVIC V, GRUNDLEHNER B, VULLERS R, et al. Wearable, wireless EEG solutions in daily life applications: What are we missing?[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(1): 6–21. doi: 10.1109/JBHI.2014.2328317.
    [5] 肖晓琳, 辛风然, 梅杰, 等. 自适应脑机接口研究综述[J]. 电子与信息学报, 2023, 45(7): 2386–2394. doi: 10.11999/JEIT220707.

    XIAO Xiaolin, XIN Fengran, MEI Jie, et al. A review of adaptive brain-computer interface research[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2386–2394. doi: 10.11999/JEIT220707.
    [6] CHEN Xiaogang, WANG Yijun, NAKANISHI M, et al. High-speed spelling with a noninvasive brain-computer interface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): E6058–E6067. doi: 10.1073/pnas.1508080112.
    [7] LARSEN O F P, TRESSELT W G, LORENZ E A, et al. A method for synchronized use of EEG and eye tracking in fully immersive VR[J]. Frontiers in Human Neuroscience, 2024, 18: 1347974. doi: 10.3389/fnhum.2024.1347974.
    [8] RAO Zuguang, ZHU Junbiao, LU Zilin, et al. A wearable brain-computer interface with fewer EEG channels for online motor imagery detection[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2024, 32: 4143–4154. doi: 10.1109/TNSRE.2024.3502135.
    [9] NISO G, ROMERO E, MOREAU J T, et al. Wireless EEG: A survey of systems and studies[J]. NeuroImage, 2023, 269: 119774. doi: 10.1016/j.neuroimage.2022.119774.
    [10] CHUANG C H, LU Shaowei, CHAO Yiping, et al. Near-zero phase-lag hyperscanning in a novel wireless EEG system[J]. Journal of Neural Engineering, 2021, 18(6): 066010. doi: 10.1088/1741-2552/ac33e6.
    [11] DEPOLLI M, VERDEL N, and KOSEC G. Offline synchronization of signals from multiple wireless sensors[J]. IEEE Sensors Journal, 2025, 25(4): 7079–7094. doi: 10.1109/JSEN.2024.3519905.
    [12] ZENIL M S C, LÓPEZ A A, MENDOZA G R P, et al. Evaluation of communication protocols for medical device interoperability: BLE and ZigBee[C]. 2023 Mexican International Conference on Computer Science, Guanajuato, Mexico, 2023: 1–6. doi: 10.1109/enc60556.2023.10508654.
    [13] 蔡雨, 许敏鹏, 钟子平, 等. 一种低功耗蓝牙通信的数据同步方法及电子设备[P]. 中国, 116133108A, 2023.

    CAI Yu, XU Minpeng, ZHONG Ziping, et al. Data synchronization method for low-power-consumption Bluetooth communication and electronic equipment[P]. CN, 116133108A, 2023.
    [14] MEI Jie, LUO Ruixin, XU Lichao, et al. MetaBCI: An open-source platform for brain-computer interfaces[J]. Computers in Biology and Medicine, 2024, 168: 107806. doi: 10.1016/j.compbiomed.2023.107806.
    [15] MEHDIZAVAREH M H, HEMATI S, and SOLTANIAN-ZADEH H. Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs[J]. PLoS One, 2020, 15(1): e0226048. doi: 10.1371/journal.pone.0226048.
    [16] 陈强, 陈勋, 余凤琼. 基于独立向量分析的脑电信号中肌电伪迹的去除方法[J]. 电子与信息学报, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209.

    CHEN Qiang, CHEN Xun, and YU Fengqiong. Removal of muscle artifact from EEG data based on independent vector analysis[J]. Journal of Electronics & Information Technology, 2016, 38(11): 2840–2847. doi: 10.11999/JEIT160209.
    [17] WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al. Brain-computer interfaces for communication and control[J]. Clinical Neurophysiology, 2002, 113(6): 767–791. doi: 10.1016/S1388-2457(02)00057-3.
    [18] 李晓东, 曹翔, 王俊霖, 等. 可穿戴式稳态视觉诱发电位脑机接口在现实场景下的性能评估[J]. 生物医学工程学杂志, 2025, 42(3): 464–472. doi: 10.7507/1001-5515.202310069.

    LI Xiaodong, CAO Xiang, WANG Junlin, et al. Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario[J]. Journal of Biomedical Engineering, 2025, 42(3): 464–472. doi: 10.7507/1001-5515.202310069.
    [19] 朱艺森, 季洲宇, 李舒然, 等. 面向智慧医疗的便携式稳态视觉诱发电位脑机接口系统[J]. 生物医学工程学杂志, 2025, 42(3): 455–463. doi: 10.7507/1001-5515.202412051.

    ZHU Yisen, JI Zhouyu, LI Shuran, et al. A portable steady-state visual evoked potential brain-computer interface system for smart healthcare[J]. Journal of Biomedical Engineering, 2025, 42(3): 455–463. doi: 10.7507/1001-5515.202412051.
    [20] XIONG Bang, WAN Bo, HUANG Jiayang, et al. Joint frequency-phase-chirp modulation of high-frequency VEPs towards user-friendly and high-capacity BCIs[J]. Biomedical Signal Processing and Control, 2026, 113: 109122. doi: 10.1016/j.bspc.2025.109122.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-24

目录

    /

    返回文章
    返回