高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于$ \mathbb{F}_{{q}^{2}}^{*} $的循环子群的极大距离可分码和近极大距离可分码的构造

杜小妮 薛婧 乔兴斌 赵紫薇

杜小妮, 薛婧, 乔兴斌, 赵紫薇. 基于$ \mathbb{F}_{{q}^{2}}^{*} $的循环子群的极大距离可分码和近极大距离可分码的构造[J]. 电子与信息学报. doi: 10.11999/JEIT251204
引用本文: 杜小妮, 薛婧, 乔兴斌, 赵紫薇. 基于$ \mathbb{F}_{{q}^{2}}^{*} $的循环子群的极大距离可分码和近极大距离可分码的构造[J]. 电子与信息学报. doi: 10.11999/JEIT251204
DU Xiaoni, XUE Jing, QIAO Xingbin, ZHAO Ziwei. Construction of Maximum Distance Separable Codes and Near Maximum Distance Separable Codes Based on Cyclic Subgroup of $ \mathbb{F}_{{q}^{2}}^{*} $[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251204
Citation: DU Xiaoni, XUE Jing, QIAO Xingbin, ZHAO Ziwei. Construction of Maximum Distance Separable Codes and Near Maximum Distance Separable Codes Based on Cyclic Subgroup of $ \mathbb{F}_{{q}^{2}}^{*} $[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251204

基于$ \mathbb{F}_{{q}^{2}}^{*} $的循环子群的极大距离可分码和近极大距离可分码的构造

doi: 10.11999/JEIT251204 cstr: 32379.14.JEIT251204
基金项目: 国家自然科学基金 (62172337, 62562055),甘肃省自然科学基金重点资助项目(23JRRA685),甘肃省基础研究创新群体基金(23JRRA684)
详细信息
    作者简介:

    杜小妮:女,博士,教授,博士生导师,研究方向为密码学与信息安全等

    薛婧:女,硕士生,研究方向为密码学与信息安全等

    乔兴斌:男,博士,讲师,研究方向为密码学与信息安全等

    赵紫薇:女,博士生,研究方向为密码学与信息安全等

    通讯作者:

    薛婧 xjingmath@163.com

  • 中图分类号: TN918.1; O157.4

Construction of Maximum Distance Separable Codes and Near Maximum Distance Separable Codes Based on Cyclic Subgroup of $ \mathbb{F}_{{q}^{2}}^{*} $

Funds: The National Natural Science Foundation of China (62172337, 62562055), The Key Project of Gansu Natural Science Foundation (23JRRA685), The Funds for Innovative Fundamental Research Group Project of Gansu Province (23JRRA684)
  • 摘要: 极大距离可分(MDS)码和近极大距离可分(NMDS)码因其具有良好的代数结构和纠错能力,在通信系统、数据存储和秘钥共享方案等领域有广泛的应用。该文利用偶特征有限域$ {\mathbb{F}}_{{{q}^{2}}} $的乘法群$ \mathbb{F}_{{q}^{2}}^{*} $的循环子群$ {U}_{q+1} $,构造了几类码长为$ q+3 $的MDS码和NMDS码,并运用$ {U}_{q+1} $的性质,确定了所构造码的参数和重量计数器,利用Magma 程序举例验证了结论的正确性,另外,计算了NMDS码的最小局部度,得到了几类最优的局部修复码。特别地,所构造的码均是关于Griesmer界的最优码。
  • 表  1  NMDS码$ {C}_{1} $的重量分布(不包括$ {A}_{0} $)

    $ {A}_{q} $ $ {A}_{q+1} $ $ {A}_{q+2} $ $ {A}_{q+3} $
    $ q({q}^{2}-1) $ $ \dfrac{({q}^{2}-1)({q}^{2}-q+6)}{2} $ $ ({q}^{2}-1)({q}^{3}+2{q}^{2}-q-3) $ $ \dfrac{{(q-1)}^{2}(q+1)(2{q}^{3}-3q-2)}{2} $
    $ 2({q}^{2}-1) $ $ \dfrac{({q}^{2}-1)({q}^{2}+5q-6)}{2} $ $ ({q}^{2}-1)({q}^{3}+2{q}^{2}-4q+3) $ $ \dfrac{({q}^{2}-1)(2{q}^{4}-2{q}^{3}-3{q}^{2}+3q-2)}{2} $
    $ \dfrac{(q+2)({q}^{2}-1)}{2} $ $ \dfrac{q({q}^{2}-1)(q+2)}{2} $ $ \dfrac{q({q}^{2}-1)(2{q}^{2}+4q-5)}{2} $ $ \dfrac{q({q}^{2}-1)(2{q}^{3}-2{q}^{2}-3q+2)}{2} $
    $ \dfrac{q({q}^{2}-1)}{2} $ $ \dfrac{({q}^{2}-1)({q}^{2}+2q+6)}{2} $ $ \dfrac{({q}^{2}-1)(2{q}^{3}+4{q}^{2}-5q-6)}{2} $ $ \dfrac{({q}^{2}-1)(2{q}^{4}-2{q}^{3}-3{q}^{2}+2q+2)}{2} $
    $ {q}^{2}-1 $ $ \dfrac{({q}^{2}-1)({q}^{2}+5q)}{2} $ $ q({q}^{2}-1)({q}^{2}+2q-4) $ $ \dfrac{q({q}^{2}-1)(q-1)(2{q}^{3}-3)}{2} $
    下载: 导出CSV
  • [1] SUN Huan, YUE Qin, and JIA Xue. The weight distributions of several classes of few-weight linear codes[J]. Advances in Mathematics of Communications, 2025, 19(1): 69–90. doi: 10.3934/amc.2023037.
    [2] QIAO Xingbin and DU Xiaoni. Weight distributions and weight hierarchies of a class of binary linear codes with a few weights[J]. Advances in Mathematics of Communications, 2025, 19(1): 245–258. doi: 10.3934/amc.2023056.
    [3] 高健, 张耀宗, 孟祥蕊, 等. 几类指标为2的不可约拟循环码的重量分布[J]. 电子与信息学报, 2022, 44(12): 4312–4318. doi: 10.11999/JEIT211104.

    GAO Jian, ZHANG Yaozong, MENG Xiangrui, et al. Weight distributions of some classes of irreducible quasi-cyclic codes of index 2[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4312–4318. doi: 10.11999/JEIT211104.
    [4] DINH Haiquang, WANG Xiaoqiang, LIU Hongwei, et al. Hamming distances of constacyclic codes of length $ 3{p}^{s} $ and optimal codes with respect to the Griesmer and Singleton bounds[J]. Finite Fields and Their Applications, 2021, 70: 101794. doi: 10.1016/j.ffa.2020.101794.
    [5] WANG Qiuyan and HENG Ziling. Near MDS codes from oval polynomials[J]. Discrete Mathematics, 2021, 344(4): 112277. doi: 10.1016/j.disc.2020.112277.
    [6] TAN Pan, FAN Cuiling, DING Cunsheng, et al. The minimum locality of linear codes[J]. Designs, Codes and Cryptography, 2023, 91(1): 83–114. doi: 10.1007/s10623-022-01099-z.
    [7] HENG Ziling and WANG Xinran. New infinite families of near MDS codes holding $ t $-designs[J]. Discrete Mathematics, 2023, 346(10): 113538. doi: 10.1016/j.disc.2023.113538.
    [8] YIN Yanan and YAN Haode. Constructions of several families of MDS codes and NMDS codes[J]. Advances in Mathematics of Communications, 2025, 19(4): 1222–1247. doi: 10.3934/amc.2024051.
    [9] DING Yun, LI Yang, and ZHU Shixin. Four new families of NMDS codes with dimension 4 and their applications[J]. Finite Fields and Their Applications, 2024, 99: 102495. doi: 10.1016/j.ffa.2024.102495.
    [10] LUO Gaojun and CAO Xiwang. Constructions of optimal binary locally recoverable codes via a general construction of linear codes[J]. IEEE Transactions on Communications, 2021, 69(8): 4987–4997. doi: 10.1109/TCOMM.2021.3083320.
    [11] TANG Chunming and DING Cunsheng. An infinite family of linear codes supporting 4-designs[J]. IEEE Transactions on Information Theory, 2021, 67(1): 244–254. doi: 10.1109/TIT.2020.3032600.
    [12] HUFFMAN W C and PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge: Cambridge University Press, 2003: 71–72. doi: 10.1017/CBO9780511807077.
    [13] DODUNEKOV S and LANDGEV I. On near-MDS codes[J]. Journal of Geometry, 1995, 54(1): 30–43. doi: 10.1007/BF01222850.
    [14] FALDUM A and WILLEMS W. Codes of small defect[J]. Designs, Codes and Cryptography, 1997, 10(3): 341–350. doi: 10.1023/A:1008247720662.
    [15] LIDL R and NIEDERREITER H. Finite Fields[M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 268–342.
    [16] GOPALAN P, HUANG Cheng, SIMITCI H, et al. On the locality of codeword symbols[J]. IEEE Transactions on Information Theory, 2012, 58(11): 6925–6934. doi: 10.1109/TIT.2012.2208937.
    [17] CADAMBE V and MAZUMDAR A. An upper bound on the size of locally recoverable codes[C]. 2013 International Symposium on Network Coding (NetCod), Calgary, Canada, 2013: 1–5. doi: 10.1109/NetCod.2013.6570829.
    [18] HAO Jie, XIA Shutao, SHUM K W, et al. Bounds and constructions of locally repairable codes: Parity-check matrix approach[J]. IEEE Transactions on Information Theory, 2020, 66(12): 7465–7474. doi: 10.1109/TIT.2020.3021707.
    [19] 杜小妮, 薛婧, 乔兴斌, 等. 几类MDS码和NMDS码的构造[J]. 西北师范大学学报(自然科学版), 2026, 62(1): 41–48. doi: 10.16783/j.cnki.nwnuz.2026.01.005.
  • 加载中
表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  29
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-11-14
  • 修回日期:  2026-01-08
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-25

目录

    /

    返回文章
    返回