高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向机器人螺栓装配的视觉感知与力控协同方法

张春云 孟昕曈 陶陶 周怀东

张春云, 孟昕曈, 陶陶, 周怀东. 面向机器人螺栓装配的视觉感知与力控协同方法[J]. 电子与信息学报. doi: 10.11999/JEIT251193
引用本文: 张春云, 孟昕曈, 陶陶, 周怀东. 面向机器人螺栓装配的视觉感知与力控协同方法[J]. 电子与信息学报. doi: 10.11999/JEIT251193
ZHANG Chunyun, MENG Xintong, TAO Tao, ZHOU Huaidong. Vision-Guided and Force-Controlled Method for Robotic Screw Assembly[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251193
Citation: ZHANG Chunyun, MENG Xintong, TAO Tao, ZHOU Huaidong. Vision-Guided and Force-Controlled Method for Robotic Screw Assembly[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251193

面向机器人螺栓装配的视觉感知与力控协同方法

doi: 10.11999/JEIT251193 cstr: 32379.14.JEIT251193
基金项目: 中国国家自然科学基金联合资助项目(U22A2057, U22B2042)
详细信息
    作者简介:

    张春云:男,硕士生,研究方向为视觉伺服、机器人运动控制、灵巧操作

    孟昕曈:女,硕士生,研究方向为图像处理、目标检测、机械臂控制

    陶陶:男,教授,研究方向为智能物联网、嵌入式系统、数据隐私保护

    周怀东:男,副研究员,研究方向为视触感控一体化灵巧手智能操作、智能体类人操作技能知识化表达

    通讯作者:

    周怀东 hdzhou@tsinghua.edu.cn

  • 中图分类号: TP249

Vision-Guided and Force-Controlled Method for Robotic Screw Assembly

Funds: The Joint Funds of the National Natural Science Foundation of China (U22A2057, U22B2042)
  • 摘要: 随着工业自动化与智能制造的发展,机器人在精密装配任务中应用广泛,尤其在螺栓装配等高精度作业环节中发挥着重要作用。然而,在螺栓装配过程中,存在目标物体位姿不确定、微小孔位识别困难以及末端执行器姿态缺乏动态闭环修正等问题。为此,该文提出一种面向机器人螺栓装配的视觉感知与力控协同方法。首先,构建语义增强的6D位姿估计算法,通过融合开放词汇目标检测模块与通用分割模块增强目标感知能力,提升初始位姿精度,并在连续帧跟踪中引入语义约束与平移修正,实现动态环境下稳健跟踪。其次,设计基于改进NanoDet的螺纹孔检测算法,采用轻量级MobileNetV3作为特征提取网络,并增加圆形分支检测头,有效提高微小孔位的识别精度与边界拟合能力,为后续装配提供可靠特征基础。最后,提出分层视觉引导与力控协同的装配策略,通过全局粗定位与局部精定位逐级优化目标位姿,并结合末端力觉反馈进行姿态微调,实现螺栓与螺纹孔的高精度对准与稳定装配。实验结果表明,该文方法在装配精度、鲁棒性及稳定性方面均具有显著优势,具备良好的工程应用前景。
  • 图  1  螺栓装配流程示意图

    图  2  6D位姿估计算法框架图

    图  3  改进NanoDet模型结构图

    图  4  末端姿态修正示意图

    图  5  实验平台整体配置

    图  6  动态场景下部分跟踪结果对比

    图  7  不同算法孔位检测结果对比图

    图  8  圆孔拟合结果

    图  9  螺栓装配实验台

    图  10  不同倾角装配实验图

    图  11  不同规格螺栓装配实验图

    图  12  不同扰动条件下装配实验图

    图  13  螺栓装配过程中力觉变化对比

    表  1  初始位姿估计对比实验结果

    任务FoundationPose本文方法
    PE/mOE/°PE/mOE/°
    10.01215.0830.00953.974
    20.01205.1220.00914.439
    30.01014.2810.00834.006
    40.01063.4620.00973.158
    50.01214.2280.00983.969
    60.01204.0470.00833.953
    70.01023.7960.09203.411
    80.01114.8210.01023.724
    90.01065.1080.00884.501
    100.01034.6560.00814.204
    平均误差0.01114.4600.00913.934
    下载: 导出CSV

    表  2  跟踪性能对比实验结果

    算法总帧数成功帧数TSR/%
    FoundationPose视频164150272
    视频2917698
    视频3695428
    本文方法视频164157685
    视频2917797
    视频3695548
    下载: 导出CSV

    表  3  不同模型的对比实验结果

    模型mAP@0.5(%)P(%)R(%)Weights/MBGFLOPs
    RetinaNet26.398.126.6145.734.6
    YOLOv797.496.497.274.813.2
    YOLOv898.198.591.418.96.0
    YOLOv1198.198.692.815.64.6
    NanoDet97.596.798.87.61.9
    本文方法98.798.399.211.72.9
    下载: 导出CSV

    表  4  不同倾角装配性能实验结果

    倾角实验次数成功次数成功率(%)
    302996.7
    15°302996.7
    30°302790
    45°302583.3
    下载: 导出CSV

    表  5  不同螺栓规格装配性能实验结果

    螺栓规格方法(原NanoDet)本文方法(改进NanoDet)
    实验次数成功次数成功率(%)实验次数成功次数成功率(%)
    M8302893.33030100
    M6302790302996.7
    M4302480302790
    下载: 导出CSV

    表  6  动态扰动装配性能实验结果

    扰动类型实验次数成功次数成功率(%)
    平移扰动302893.3
    旋转扰动302790
    混合扰动302583.3
    下载: 导出CSV

    表  7  力觉反馈对比实验结果

    实验条件实验次数成功次数成功率(%)
    仅视觉302066.7
    本文方法302996.7
    下载: 导出CSV

    表  8  全流程装配各阶段时间统计结果

    装配环节平均耗时(s)标准差(s)
    初始位姿估计3.600.25
    粗定位移动1.200.18
    螺纹孔检测0.0860.009
    精定位移动0.970.08
    姿态微调2.150.22
    螺栓锁付1.520.10
    单次装配总周期时间9.530.42
    下载: 导出CSV
  • [1] 王耀南, 江一鸣, 姜娇, 等. 机器人感知与控制关键技术及其智能制造应用[J]. 自动化学报, 2023, 49(3): 494–513. doi: 10.16383/j.aas.c220995.

    WANG Yaonan, JIANG Yiming, JIANG Jiao, et al. Key technologies of robot perception and control and its intelligent manufacturing applications[J]. Acta Automatica Sinica, 2023, 49(3): 494–513. doi: 10.16383/j.aas.c220995.
    [2] SUN Fuchun, MIAO Shengyi, ZHONG Daming, et al. Manipulation skill representation and knowledge reasoning for 3C assembly[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(6): 5387–5397. doi: 10.1109/TMECH.2025.3543739.
    [3] LIU Yang, CHEN Weixing, BAI Yongjie, et al. Aligning cyber space with physical world: A comprehensive survey on embodied AI[J]. IEEE/ASME Transactions on Mechatronics, 2025, 30(6): 7253–7274. doi: 10.1109/TMECH.2025.3574943.
    [4] WEN Bowen, YANG Wei, KAUTZ J, et al. FoundationPose: Unified 6D pose estimation and tracking of novel objects[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 17868–17879. doi: 10.1109/CVPR52733.2024.01692.
    [5] ZHOU Chuangchuang, WU Yifan, STERKENS W, et al. Towards robotic disassembly: A comparison of coarse-to-fine and multimodal fusion screw detection methods[J]. Journal of Manufacturing Systems, 2024, 74: 633–646. doi: 10.1016/j.jmsy.2024.04.024.
    [6] HE Yisheng, SUN Wei, HUANG Haibin, et al. PVN3D: A deep point-wise 3D keypoints voting network for 6DoF pose estimation[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11629–11638. doi: 10.1109/CVPR42600.2020.01165.
    [7] HE Yisheng, HUANG Haibin, FAN Haoqiang, et al. FFB6D: A full flow bidirectional fusion network for 6D pose estimation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 3002–3012. doi: 10.1109/CVPR46437.2021.00302.
    [8] LEE T, TREMBLAY J, BLUKIS V, et al. TTA-COPE: Test-time adaptation for category-level object pose estimation[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 21285–21295. doi: 10.1109/CVPR52729.2023.02039.
    [9] ZHANG Ruida, DI Yan, MANHARDT F, et al. SSP-pose: Symmetry-aware shape prior deformation for direct category-level object pose estimation[C]. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022: 7452–7459. doi: 10.1109/IROS47612.2022.9981506.
    [10] LABBÉ Y, MANUELLI L, MOUSAVIAN A, et al. MegaPose: 6D pose estimation of novel objects via render & compare[C]. Proceedings of the 6th Conference on Robot Learning, Auckland, New Zealand, 2023: 715–725.
    [11] LI Fu, VUTUKUR S R, YU Hao, et al. NeRF-pose: A first-reconstruct-then-regress approach for weakly-supervised 6D object pose estimation[C]. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, France, 2023: 2115–2125. doi: 10.1109/ICCVW60793.2023.00226.
    [12] SUN Jiaming, WANG Zihao, ZHANG Siyu, et al. OnePose: One-shot object pose estimation without CAD models[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 6815–6824. doi: 10.1109/CVPR52688.2022.00670.
    [13] HE Xingyi, SUN Jiaming, WANG Yuang, et al. OnePose++: Keypoint-free one-shot object pose estimation without CAD models[C]. Proceedings of the 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 2544. doi: 10.5555/3600270.3602814.
    [14] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105. doi: 10.5555/2999134.2999257.
    [15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824.
    [16] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [18] JOCHER G. Ultralytics YOLOv5[EB/OL]. https://github.com/ultralytics/yolov5, 2022.
    [19] JOCHER G, CHAURASIA A, and QIU J. Ultralytics YOLOv8[EB/OL]. https://github.com/ultralytics/ultralytics, 2023. (查阅网上资料,未能确认网址与文献是否相符).
    [20] JOCHER G and QIU J. Ultralytics YOLO11[EB/OL]. https://github.com/ultralytics/ultralytics, 2024. (查阅网上资料,未能确认网址与文献是否相符).
    [21] JHA D K, ROMERES D, JAIN S, et al. Design of adaptive compliance controllers for safe robotic assembly[C]. 2023 European Control Conference (ECC), Bucharest, Romania, 2023: 1–8. doi: 10.23919/ECC57647.2023.10178229.
    [22] SPECTOR O, TCHUIEV V, and DI CASTRO D. InsertionNet 2.0: Minimal contact multi-step insertion using multimodal multiview sensory input[C]. 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, USA, 2022: 6330–6336. doi: 10.1109/ICRA46639.2022.9811798.
    [23] LEE G, LEE J, NOH S, et al. PolyFit: A peg-in-hole assembly framework for unseen polygon shapes via sim-to-real adaptation[C]. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 2024: 533–540. doi: 10.1109/IROS58592.2024.10802554.
    [24] OTA K, JHA D K, JAIN S, et al. Autonomous robotic assembly: From part singulation to precise assembly[C]. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Abu Dhabi, United Arab Emirates, 2024: 13525–13532. doi: 10.1109/IROS58592.2024.10802423.
    [25] LIU Shilong, ZENG Zhaoyang, REN Tianhe, et al. Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection[C]. 18th European Conference on Computer Vision, Milan, Italy, 2025: 38–55. doi: 10.1007/978-3-031-72970-6_3.
    [26] RAVI N, GABEUR V, HU Yuanting, et al. SAM 2: Segment anything in images and videos[J]. arXiv preprint arXiv: 2408.00714, 2024. doi: 10.48550/arXiv.2408.00714. (查阅网上资料,不确定本条文献类型及格式是否正确,请确认).
    [27] RANGILYU. NanoDet-plus: Super fast and high accuracy lightweight anchor-free object detection model[EB/OL]. https://github.com/RangiLyu/nanodet, 2021.
    [28] HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1314–1324. doi: 10.1109/ICCV.2019.00140.
    [29] 张立建, 胡瑞钦, 易旺民. 基于六维力传感器的工业机器人末端负载受力感知研究[J]. 自动化学报, 2017, 43(3): 439–447. doi: 10.16383/j.aas.2017.c150753.

    ZHANG Lijian, HU Ruiqin, and YI Wangmin. Research on force sensing for the end-load of industrial robot based on a 6-axis force/torque sensor[J]. Acta Automatica Sinica, 2017, 43(3): 439–447. doi: 10.16383/j.aas.2017.c150753.
  • 加载中
图(13) / 表(8)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-22
  • 录用日期:  2026-01-22
  • 网络出版日期:  2026-02-01

目录

    /

    返回文章
    返回