高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合专家驱动的大规模异构本地电力通信网资源分配与调度算法

景川芳 朱晓荣

景川芳, 朱晓荣. 混合专家驱动的大规模异构本地电力通信网资源分配与调度算法[J]. 电子与信息学报. doi: 10.11999/JEIT251176
引用本文: 景川芳, 朱晓荣. 混合专家驱动的大规模异构本地电力通信网资源分配与调度算法[J]. 电子与信息学报. doi: 10.11999/JEIT251176
JING Chuanfang, ZHU Xiaorong. Routing and Resource Scheduling Algorithm Driven by Mixture of Experts in Large-scale Heterogeneous Local Power Communication Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251176
Citation: JING Chuanfang, ZHU Xiaorong. Routing and Resource Scheduling Algorithm Driven by Mixture of Experts in Large-scale Heterogeneous Local Power Communication Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251176

混合专家驱动的大规模异构本地电力通信网资源分配与调度算法

doi: 10.11999/JEIT251176 cstr: 32379.14.JEIT251176
基金项目: 国家科技重大专项项目(No.2024ZD1300400),国家自然科学基金(No.92367102),江苏省研究生科研与实践创新计划项目(No.KYCX22_0944)
详细信息
    作者简介:

    景川芳:女,博士生,研究方向为6G分布式网络、多维资源分配

    朱晓荣:女,教授,研究方向为5G/6G通信系统、物联网、区块链等关键技术及系统研发

    通讯作者:

    朱晓荣 xrzhu@njupt.edu.cn

  • 中图分类号: TP182; TN929.5

Routing and Resource Scheduling Algorithm Driven by Mixture of Experts in Large-scale Heterogeneous Local Power Communication Network

Funds: The National Science and Technology Major Project (No.2024ZD1300400), The Natural Science Foundation of China (No.92367102), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.KYCX22_0944)
  • 摘要: 为了在资源受限的本地电力通信网中尽可能地满足业务差异化服务质量(QoS)需求,该文提出了一种混合专家驱动的资源分配与调度算法。首先,考虑业务差异化QoS需求、链路类型、信道数量和数据调制方式,建立了大规模异构本地电力通信网资源供需差异最小化问题。接着,为了求解该NP-hard问题,设计了一个包含专家网络和门控网络的混合专家模型,通过不同专家模型专门且并行学习资源分配与调度策略,以满足多样化业务对数据传输速率、时延和可靠性的个性化需求。其中,专家网络由共享型专家和特定于业务QoS的专家组成,用于生成最优下一跳以及节点对间链路、信道和调制方式的有效分配策略。门控网络通过自适应组合和重用多个专家模型来满足已有的和未知的业务QoS需求。最后,仿真结果表明,相较多种对比算法,所提出算法在资源利用率、时延和可靠性方面都有较好的表现。
  • 图  1  融合HPLC与RF的大规模异构本地电力通信网络

    图  2  基于混合专家的大规模异构本地电力通信网资源分配与调度框架

    图  3  不同业务数量下性能供需差异值

    图  4  各类业务平均端到端时延

    图  5  各类业务平均端到端可靠性

    表  1  仿真参数

    参数
    HPLC链路传输速率[20] 1.1 Mbps
    HPLC信道数量 20
    HPLC信道调制方式 FSK, BPSK, QPSK
    470MHz-RF传输速率[20] 250 kbps
    RF信道数量 20
    RF信道调制方式 BPSK, QPSK, 16QAM, 64QAM
    汇聚节点算力资源大小 10 GHz
    计算密集型业务所需算力 3 GHz
    GAT学习率[20] 0.005
    GAT丢失率[20] 0.5
    RELU参数[20] 0.00025
    探索概率初始值$ \epsilon \left(0\right) $[8] 0.99
    衰减系数$ \chi $[8] 6
    下载: 导出CSV
  • [1] CALERO F, CAÑIZARES C A, BHATTACHARYA K, et al. A review of modeling and applications of energy storage systems in power grids[J]. Proceedings of the IEEE, 2023, 111(7): 806–831. doi: 10.1109/JPROC.2022.3158607.
    [2] WU Dan, SEO G S, XU Lie, et al. Grid integration of offshore wind power: Standards, control, power quality and transmission[J]. IEEE Open Journal of Power Electronics, 2024, 5: 583–604. doi: 10.1109/OJPEL.2024.3390417.
    [3] LI Yuanzheng, YU Chaofan, SHAHIDEHPOUR M, et al. Deep reinforcement learning for smart grid operations: Algorithms, applications, and prospects[J]. Proceedings of the IEEE, 2023, 111(9): 1055–1096. doi: 10.1109/JPROC.2023.3303358.
    [4] LI Jun, SUN Haiyang, DENG Xiumei, et al. Mobility-aware user scheduling in wireless federated learning with contextual multi-armed bandit[J]. China Communications, 2025, 22(11): 256–272. doi: 10.23919/JCC.fa.2023-0427.202511.
    [5] LI Hongbo and DUAN Lingjie. Competitive multi-armed bandit games for resource sharing[J]. IEEE Transactions on Mobile Computing, 2025, 24(9): 8393–8404. doi: 10.1109/TMC.2025.3555971.
    [6] SALAH M M, SAAD R S, ZAKI R M, et al. Multi-armed bandits for resource allocation in UAV-assisted LoRa networks[J]. IEEE Internet of Things Magazine, 2025, 8(2): 40–45. doi: 10.1109/IOTM.001.2400088.
    [7] GALLI A, MOSCATO V, ROMANO S P, et al. Playing with a multi armed bandit to optimize resource allocation in satellite-enabled 5G networks[J]. IEEE Transactions on Network and Service Management, 2024, 21(1): 341–354. doi: 10.1109/TNSM.2023.3302064.
    [8] 朱晓荣, 贺楚闳. 基于强化学习的大规模多模Mesh网络联合路由选择及资源调度算法[J]. 电子与信息学报, 2024, 46(7): 2773–2782. doi: 10.11999/JEIT231103.

    ZHU Xiaorong and HE Chuhong. Joint routing and resource scheduling algorithm for large-scale multi-mode mesh networks based on reinforcement learning[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2773–2782. doi: 10.11999/JEIT231103.
    [9] LI Guiyi, OUYANG Yuxiang, and LINLONG Siyu. En route congestion prediction method for air route network based on spatiotemporal graph convolution network and attention[J]. IEEE Intelligent Transportation Systems Magazine, 2025, 17(3): 33–57. doi: 10.1109/MITS.2024.3450953.
    [10] JI Han, WU Xiping, ZENG Zhihong, et al. Graph attention networks-enabled load balancing for 6G heterogeneous networks with parallel transmission[J]. IEEE Transactions on Vehicular Technology, 2025, 1–14. Early Access. doi: 10.1109/TVT.2025.3636175. (查阅网上资料,未找到本条文献卷期号,请确认).
    [11] CHEN Chongpu, CHEN Xinbo, YANG Yi, et al. Sparse attention graph convolution network for vehicle trajectory prediction[J]. IEEE Transactions on Vehicular Technology, 2024, 73(12): 18294–18306. doi: 10.1109/TVT.2024.3443850.
    [12] PARK J and LIM S. LEHAN: Link-feature enhanced heterogeneous graph attention network[J]. IEEE Access, 2022, 10: 86248–86255. doi: 10.1109/ACCESS.2022.3198941.
    [13] LI Chenxu, FENG Lei, LI Wenjing, et al. Long-term traffic flow prediction: A knowledge-driven graph attention spatio-temporal network[J]. IEEE Transactions on Network and Service Management, 2025, 22(5): 4206–4221. doi: 10.1109/TNSM.2025.3595919.
    [14] ZHOU Jingxuan, XIAO Wenhua, ZHANG Dayu, et al. Multi-task model fusion with mixture of experts structure[C]. 2023 9th International Conference on Big Data and Information Analytics (BigDIA), Haikou, China, 2023: 387–391. doi: 10.1109/BigDIA60676.2023.10429752.
    [15] CHENG Guangran, DONG Lu, CAI Wenzhe, et al. Multi-task reinforcement learning with attention-based mixture of experts[J]. IEEE Robotics and Automation Letters, 2023, 8(6): 3812–3819. doi: 10.1109/LRA.2023.3271445.
    [16] YUAN Renteng, ABDEL-ATY M, XIANG Qiaojun, et al. A temporal multi-gate mixture-of-experts approach for vehicle trajectory and driving intention prediction[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1204–1216. doi: 10.1109/TIV.2023.3336310.
    [17] RAMBABU R, VADAKKEPAT P, TAN K C, et al. A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2020, 50(12): 5099–5112. doi: 10.1109/TCYB.2019.2909806.
    [18] DU Hongyang, LIU Guangyuan, LIN Yijing, et al. Mixture of experts for intelligent networks: A large language model-enabled approach[C]. 2024 International Wireless Communications and Mobile Computing (IWCMC), Ayia Napa, Cyprus, 2024: 531–536. doi: 10.1109/IWCMC61514.2024.10592370.
    [19] YANG Liang, YAN Xiaoqin, LI Sai, et al. Performance analysis of dual-hop mixed PLC/RF communication systems[J]. IEEE Systems Journal, 2022, 16(2): 2867–2878. doi: 10.1109/JSYST.2021.3088096.
    [20] JING Chuanfang, ZHU Xiaorong, and LIU Xu. Data/model jointly driven routing and resource allocation algorithms for large-scale self-organizing networks for new power systems[C]. 2nd Future Industrial Internet (FII 2024), Shenzhen, China, 2024: 55–76. doi: 10.1007/978-981-96-6736-9_5.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-22
  • 录用日期:  2026-01-22
  • 网络出版日期:  2026-02-01

目录

    /

    返回文章
    返回