高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能反射面通信近邻互耦模型与可调阻抗优化方法

吴炜 王文鼐

吴炜, 王文鼐. 智能反射面通信近邻互耦模型与可调阻抗优化方法[J]. 电子与信息学报. doi: 10.11999/JEIT251109
引用本文: 吴炜, 王文鼐. 智能反射面通信近邻互耦模型与可调阻抗优化方法[J]. 电子与信息学报. doi: 10.11999/JEIT251109
WU Wei, WANG Wennai. Neighboring Mutual-Coupling Channel Model and Tunable-Impedance Optimization Method for Reconfigurable-Intelligent-Surface Aided Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251109
Citation: WU Wei, WANG Wennai. Neighboring Mutual-Coupling Channel Model and Tunable-Impedance Optimization Method for Reconfigurable-Intelligent-Surface Aided Communications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251109

智能反射面通信近邻互耦模型与可调阻抗优化方法

doi: 10.11999/JEIT251109 cstr: 32379.14.JEIT251109
基金项目: 南京邮电大学校引进人才科研启动基金项目(自然科学)(NY222118)
详细信息
    作者简介:

    吴炜:女,讲师,研究方向为无线宽带通信网络、移动通信

    王文鼐:男,教授,研究方向为无线宽带通信网络、网络仿真与性能评估

    通讯作者:

    王文鼐 wangwn@njupt.edu.cn

  • 中图分类号: TN92

Neighboring Mutual-Coupling Channel Model and Tunable-Impedance Optimization Method for Reconfigurable-Intelligent-Surface Aided Communications

Funds: Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (NY222118)
  • 摘要: 智能反射面(RIS)通常由大量可编程反射单元密集排布而成,当反射单元间距小于入射信号半波长时,电磁互耦效应会显著影响RIS部署的整体性能。为此,该文针对RIS通信系统研究基于近邻互耦矩阵的简化信道模型以及可调阻抗优化方法。首先,依据互阻抗强度随间隔单元数增加而快速衰减的电磁特性,提取紧邻和次紧邻互耦参数,并结合对应的映射矩阵构建近邻互耦矩阵;其次,在远场条件下,基于等效耦合距离对收发端与RIS间互阻抗计算表达式进行简化,进而建立低复杂度互耦感知信道模型。进一步,基于简化模型并采用阻抗分解法,推导RIS可调阻抗的最优闭式解,其求解复杂度显著低于诺伊曼级数近似算法,并且不受反射单元间距和数量影响。仿真结果表明,所提信道模型和阻抗优化方法在反射单元间距小于四分之信号波长时具备良好的准确性和有效性。
  • 图  1  RE间互耦效应及等效阻抗示意图

    图  2  互耦强度随间隔单元数变化趋势及近邻RE示意图

    图  3  映射矩阵构造示例

    图  4  本文所提近邻互耦模型与参考模型[18]对比

    图  5  近邻矩阵与全互耦矩阵计算复杂度对比

    图  6  本文所提近邻模型与参考模型误差比较

    图  7  本文所提可调阻抗优化方法与文献方法对比

    图  8  所提方法的信道增益变化曲线

  • [1] MU Xidong, XU Jiaqi, LIU Yuanwei, et al. Reconfigurable intelligent surface-aided near-field communications for 6G: Opportunities and challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(1): 65–74. doi: 10.1109/MVT.2023.3345608.
    [2] BASAR E, ALEXANDROPOULOS G C, LIU Yuanwei, et al. Reconfigurable intelligent surfaces for 6G: Emerging hardware architectures, applications, and open challenges[J]. IEEE Vehicular Technology Magazine, 2024, 19(3): 27–47. doi: 10.1109/MVT.2024.3415570.
    [3] WANG Jinghe, TANG Wankai, LIANG Jingcheng, et al. Reconfigurable intelligent surface: Power consumption modeling and practical measurement validation[J]. IEEE Transactions on Communications, 2024, 72(9): 5720–5734. doi: 10.1109/TCOMM.2024.3382332.
    [4] 费丹, 陈晨, 郑鹏, 等. 基于智能超表面的室内覆盖增强技术研究与实验验证[J]. 电子与信息学报, 2022, 44(7): 2374–2381. doi: 10.11999/JEIT220068.

    FEI Dan, CHEN Chen, ZHENG Peng, et al. Research and experimental verification of reconfigurable intelligent surface in indoor coverage enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2374–2381. doi: 10.11999/JEIT220068.
    [5] SIDDIKY M N A, RAHMAN M E, UZZAL M S, et al. A comprehensive exploration of 6G wireless communication technologies[J]. Computers, 2025, 14(1): 15. doi: 10.3390/computers14010015.
    [6] KUMAR A, SHARMA S, KUMAR M H, et al. RIS-assisted terahertz communications for 6G networks: A comprehensive overview[J]. IEEE Access, 2025, 13: 96337–96364. doi: 10.1109/ACCESS.2025.3574476.
    [7] BALANIS C A. Antenna Theory: Analysis and Design[M]. 4th ed. Hoboken: Wiley, 2016. (查阅网上资料, 未找到对应的页码信息, 请确认).
    [8] DI RENZO M, DANUFANE F H, and TRETYAKOV S. Communication models for reconfigurable intelligent surfaces: From surface electromagnetics to wireless networks optimization[J]. Proceedings of the IEEE, 2022, 110(9): 1164–1209. doi: 10.1109/JPROC.2022.3195536.
    [9] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [10] LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544.
    [11] GRADONI G and DI RENZO M. End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances[J]. IEEE Wireless Communications Letters, 2021, 10(5): 938–942. doi: 10.1109/LWC.2021.3050826.
    [12] MURSIA P, PHANG S, SCIANCALEPORE V, et al. SARIS: Scattering aware reconfigurable intelligent surface model and optimization for complex propagation channels[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1921–1925. doi: 10.1109/LWC.2023.3299304.
    [13] SHEN Shanpu, CLERCKX B, and MURCH R. Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1229–1243. doi: 10.1109/TWC.2021.3103256.
    [14] ABRARDO A, TOCCAFONDI A, and DI RENZO M. Design of reconfigurable intelligent surfaces by using S-parameter multiport network theory—optimization and full-wave validation[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 17084–17102. doi: 10.1109/TWC.2024.3450722.
    [15] NERINI M, SHEN Shanpu, LI Hongyu, et al. Beyond diagonal reconfigurable intelligent surfaces utilizing graph theory: Modeling, architecture design, and optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 9972–9985. doi: 10.1109/TWC.2024.3367631.
    [16] NERINI M, SHEN Shanpu, LI Hongyu, et al. A universal framework for multiport network analysis of reconfigurable intelligent surfaces[J]. IEEE Transactions on Wireless Communications, 2024, 23(10): 14575–14590. doi: 10.1109/TWC.2024.3416825.
    [17] ZHENG Pinjun, WANG Ruiqi, SHAMIM A, et al. Mutual coupling in RIS-aided communication: Model training and experimental validation[J]. IEEE Transactions on Wireless Communications, 2024, 23(11): 17174–17188. doi: 10.1109/TWC.2024.3451548.
    [18] QIAN Xuewen and DI RENZO M. Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1183–1187. doi: 10.1109/LWC.2021.3061449.
    [19] ABRARDO A, DARDARI D, DI RENZO M, et al. MIMO interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model[J]. IEEE Wireless Communications Letters, 2021, 10(12): 2624–2628. doi: 10.1109/LWC.2021.3109017.
    [20] MURSIA P, PHANG S, SCIANCALEPORE V, et al. SARIS: Scattering aware reconfigurable intelligent surface model and optimization for complex propagation channels[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1921–1925. doi: 10.1109/LWC.2023.3299304. .
    [21] PEROVIć N S, TRAN L N, DI RENZO M, et al. Optimization of RIS-aided SISO systems based on a mutually coupled loaded wire dipole model[C]. 2023 57th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2023: 145–150. doi: 10.1109/IEEECONF59524.2023.10476915.
    [22] LI Hongyu, SHEN Shanpu, NERINI M, et al. Beyond diagonal reconfigurable intelligent surfaces with mutual coupling: Modeling and optimization[J]. IEEE Communications Letters, 2024, 28(4): 937–941. doi: 10.1109/LCOMM.2024.3361648.
    [23] SUN Wenlong, SUN Shaohui, SHI Tong, et al. A new model of beyond diagonal reconfigurable intelligent surfaces (BD-RIS) for the corresponding quantization and optimization[J]. IEEE Transactions on Wireless Communications, 2024, 23(9): 11521–11534. doi: 10.1109/TWC.2024.3382750.
    [24] LI Hongyu, NERINI M, SHEN Shanpu, et al. Beyond diagonal reconfigurable intelligent surfaces in wideband OFDM communications: Circuit-based modeling and optimization[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 3623–3636. doi: 10.1109/TWC.2025.3532616.
    [25] LI Dong. Ergodic capacity of intelligent reflecting surface-assisted communication systems with phase errors[J]. IEEE Communications Letters, 2020, 24(8): 1646–1650. doi: 10.1109/LCOMM.2020.2997027.
  • 加载中
图(8)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-02
  • 录用日期:  2025-12-02
  • 网络出版日期:  2025-12-10

目录

    /

    返回文章
    返回