-
摘要: 在5G非地面网络(5G-NTN)低轨卫星通信系统中,多普勒效应会带来载波频偏(CFO)、采样频偏(SFO)以及子载波间频偏(ISFO)。研究发现,当正交频分复用(OFDM)信号子载波数量较大且采用高阶调制时,ISFO会成为制约接收机性能的关键因素。现有算法多针对CFO和SFO的估计及补偿展开研究,极少考虑ISFO的影响。另外,采用传统的最大似然估计算法对CFO和SFO进行联合估计时,需要进行一维或二维网格搜索,计算复杂度非常高。针对上述问题,本文利用5G-NTN中导频信号的分布特点,提出了两种低复杂度的CFO和SFO联合估计算法。首先,利用5G-NTN中解调参考信号的互相关向量在主瓣内的单峰特性,设计了一种基于二分搜索的联合估计算法,可以实现快速收敛。然后,设计了基于观测量自相关的L&R估计算法,推导了待估参数的近似闭式解。典型实例分析和仿真表明,两种算法性能接近采用一维或二维搜索的最大似然估计算法,且所提二分搜索估计算法运算量仅为二维搜索最大似然估计算法的4%、一维搜索最大似然估计算法的44%。
-
1 二分搜索估计算法
输入:$ {\boldsymbol{Y}}_{M1} $,$ {\boldsymbol{Y}}_{M2} $,$ \rho $,$ {k}_{0} $,$ d $,$ I $,$ {\alpha }_{\max } $,$ N{}_{\text{fi}} $ 1:if $ \rho dI{\alpha }_{\max } > 2\pi $ then 2: 确定粗搜索次数:$ {N}_{\text{co}}=2\times \left\lceil \rho dI{\alpha }_{\max }/(2\pi )\right\rceil $,并设置
$ \boldsymbol{Z}={[Z(1),Z(2),\cdots ,Z({{N}_{\text{co}}})]}^{\mathrm{T}} $;3: for $ l=1\cdots {N}_{\text{co}} $ do 4: 获取粗搜索点:$ \beta =2\pi (l-({N}_{\text{co}}+1)/2)/(\rho dI) $; 5: 根据公式(10)~公式(12)依次计算$ {\mathbf{\tilde{\boldsymbol{Y}}}}_{\text{M2}} $、$ \boldsymbol{R}(\beta ) $和$ f(\beta ) $,
并将$ f(\beta ) $存入$ Z(l) $中;6: end 7: 搜索得到$ \boldsymbol{Z} $中最大值的序号$ {l}_{\max } $,计算粗估计值
$ {\overline{\alpha }}_{mid}=2\pi ({l}_{\max }-({N}_{\text{co}}+1)/2)/(\rho dI) $;8:else 9: 粗估计值$ {\overline{\alpha }}_{mid}=0 $; 10:end 11:确定精搜索的初始基准点$ \gamma ={\overline{\alpha }}_{mid} $及步进$ \Delta =\pi /(\rho dI) $; 12:for $ n=1\cdots N{}_{\text{fi}} $ do 13: if $ f(\gamma +\Delta ) > f(\gamma -\Delta ) $ then 14: 调整基准点和步进:$ \gamma =\gamma +\Delta $,$ \Delta =\Delta /2 $; 15: else 16: 调整基准点和步进:$ \gamma =\gamma -\Delta $,$ \Delta =\Delta /2 $; 17: end 18:end 19:计算多普勒参数估计值:$ \overline{\alpha }=\gamma $,
$ {\overline{\varepsilon }}_{0}=\arctan (\displaystyle\sum\nolimits_{i=0}^{I-1}{R}_{i}(\overline{\alpha }))/\rho $;输出:$ \overline{\alpha } $,$ {\overline{\varepsilon }}_{0} $ 表 1 算法复杂度比较
算法名称 复数乘 实数乘 复数加 本文算法1 73728 36864 36864 本文算法2 893568 4608 768 2D-ML算法 1658880 0 829440 1D-ML算法 165888 0 82944 表 2 仿真系统参数
参数名称 参数值 子载波数量($ K $) 768(64RB)、 3072 (256RB)导频子载波间隔($ d $) 2 DMRS信号序号 M1=2,M2=6 SFO($ \eta $) 30 ppm CFO($ {\varepsilon }_{0} $) 0.02 ISFO($ \Delta \varepsilon $) 24 ppm 信道类型 AWGN 编码调制方式 MCS10(BPSK、码率308/ 1024 )、
MCS25(16QSK、码率873/1024 )天线配置 SISO -
[1] 孙耀华, 彭木根, 赵亚飞, 等. 低轨卫星互联网: 从星地融合迈向通导遥一体化[J]. 北京邮电大学学报, 2024, 47(6): 69–98. doi: 10.13190/j.jbupt.2024-100.SUN Yaohua, PENG Mugen, ZHAO Yafei, et al. Low earth orbit satellite network: From satellite-terrestrial convergence to the integration of communication, navigation and sensing[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(6): 69–98. doi: 10.13190/j.jbupt.2024-100. [2] 周颖, 施倩, 李瑞瑜, 等. 天地一体化网络发展及关键技术概述[J]. 空间电子技术, 2025, 22(1): 28–39. doi: 10.3969/j.issn.1674-7135.2025.01.003.ZHOU Ying, SHI Qian, LI Ruiyu, et al. The overview of development and key technologies of the space-ground integrated network[J]. Space Electronic Technology, 2025, 22(1): 28–39. doi: 10.3969/j.issn.1674-7135.2025.01.003. [3] 宋艳军, 孙晨华, 谢文轩, 等. 面向低轨卫星的NTN随机接入技术[J]. 天地一体化信息网络, 2024, 5(4): 17–24. doi: 10.11959/j.issn.2096-8930.2024035.SONG Yanjun, SUN Chenhua, XIE Wenxuan, et al. Random access technology of NTN network for low orbit satellite[J]. Space-Integrated-Ground Information Networks, 2024, 5(4): 17–24. doi: 10.11959/j.issn.2096-8930.2024035. [4] 苏昭阳, 刘留, 艾渤, 等. 面向低轨卫星的星地信道模型综述[J]. 电子与信息学报, 2024, 46(5): 1684–1702. doi: 10.11999/JEIT230941.SU Zhaoyang, LIU Liu, AI Bo, et al. Survey of satellite-ground channel models for low earth orbit satellites[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1684–1702. doi: 10.11999/JEIT230941. [5] SPETH M, FECHTEL S A, FOCK G, et al. Optimum receiver design for wireless broad-band systems using OFDM. I[J]. IEEE Transactions on Communications, 1999, 47(11): 1668–1677. doi: 10.1109/26.803501. [6] 李炯卉, 熊蔚明, 姚辰. 卫星数传OFDM信号的多普勒效应影响分析[J]. 系统工程与电子技术, 2016, 38(12): 2849–2854. doi: 10.3969/j.issn.1001-506X.2016.12.25.LI Jionghui, XIONG Weiming, and YAO Chen. Analysis of Doppler effects on satellite data transmission of OFDM signals[J]. Systems Engineering and Electronics, 2016, 38(12): 2849–2854. doi: 10.3969/j.issn.1001-506X.2016.12.25. [7] 李喆, 林威洪, 邓伟, 等. Starlink下行信号的多普勒效应影响分析[J]. 通信学报, 2024, 45(3): 131–141. doi: 10.11959/j.issn.1000-436x.2024029.LI Zhe, LIN Weihong, DENG Wei, et al. Analysis of the influence of Doppler effect on Starlink downlink signals[J]. Journal on Communications, 2024, 45(3): 131–141. doi: 10.11959/j.issn.1000-436x.2024029. [8] 顾博文, 李林, 代传金, 等. 基于低轨卫星OFDM信号侦测的隐蔽定位算法研究[J]. 系统工程与电子技术, 2024, 46(12): 3957–3964. doi: 10.12305/j.issn.1001-506X.2024.12.03.GU Bowen, LI Lin, DAI Chuanjin, et al. Research on concealed positioning algorithm based on LEO satellites OFDM signal investigation and detection[J]. Systems Engineering and Electronics, 2024, 46(12): 3957–3964. doi: 10.12305/j.issn.1001-506X.2024.12.03. [9] NGUYEN-LE H, LE-NGOC T, and KO C C. RLS-based joint estimation and tracking of channel response, sampling, and carrier frequency offsets for OFDM[J]. IEEE Transactions on Broadcasting, 2009, 55(1): 84–94. doi: 10.1109/TBC.2008.2012361. [10] NGUYEN-LE H, LE-NGOC T, and KO C C. Joint channel estimation and synchronization for MIMO-OFDM in the presence of carrier and sampling frequency offsets[J]. IEEE Transactions on Vehicular Technology, 2009, 58(6): 3075–3081. doi: 10.1109/TVT.2008.2006178. [11] KIM Y H and LEE J H. Joint maximum likelihood estimation of carrier and sampling frequency offsets for OFDM systems[J]. IEEE Transactions on Broadcasting, 2011, 57(2): 277–283. doi: 10.1109/TBC.2011.2122890. [12] YUAN Jin and TORLAK M. Joint CFO and SFO estimator for OFDM receiver using common reference frequency[J]. IEEE Transactions on Broadcasting, 2016, 62(1): 141–149. doi: 10.1109/TBC.2015.2492470. [13] WANG Xu and HU Bo. A low-complexity ML estimator for carrier and sampling frequency offsets in OFDM systems[J]. IEEE Communications Letters, 2014, 18(3): 503–506. doi: 10.1109/LCOMM.2013.123113.132444. [14] PÄRLIN K, RIIHONEN T, LE NIR V, et al. Estimating and tracking wireless channels under carrier and sampling frequency offsets[J]. IEEE Transactions on Signal Processing, 2023, 71: 1053–1066. doi: 10.1109/TSP.2023.3259140. [15] 3GPP. TR 38.811 Study on new radio (NR) to support non-terrestrial networks[S]. 3GPP, 2020. (查阅网上资料, 未找到本条文献出版地信息, 请确认). [16] ZHAI Shenghua, HUI Tengfei, GONG Xianfeng, et al. High performance receiving and processing technology in satellite beam hopping communication[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 815–828. doi: 10.23919/JSEE.2024.000076. [17] 宁晓燕, 罗海玲, 孙志国, 等. 低信噪比场景下Link-16系统的联合频偏估计算法[J]. 电子与信息学报, 2023, 45(10): 3587–3593. doi: 10.11999/JEIT220967.NING Xiaoyan, LUO Hailing, SUN Zhiguo, et al. Joint frequency offset estimation for Link-16 system in low signal-noise ratio scene[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3587–3593. doi: 10.11999/JEIT220967. -
下载:
下载: