高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通过遗传算法优化和低成本CNC制造实现跨频带隐身的全金属超表面

张明 张娜娇 李佳磊 李康 VazgenVazgen 杨琳 侯卫民

张明, 张娜娇, 李佳磊, 李康, VazgenVazgen, 杨琳, 侯卫民. 通过遗传算法优化和低成本CNC制造实现跨频带隐身的全金属超表面[J]. 电子与信息学报. doi: 10.11999/JEIT251080
引用本文: 张明, 张娜娇, 李佳磊, 李康, VazgenVazgen, 杨琳, 侯卫民. 通过遗传算法优化和低成本CNC制造实现跨频带隐身的全金属超表面[J]. 电子与信息学报. doi: 10.11999/JEIT251080
ZHANG Ming, ZHANG Najiao, LI Jialei, LI Kang, MELIKYAN MELIKYAN, YANG Lin, HOU Weimin. Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251080
Citation: ZHANG Ming, ZHANG Najiao, LI Jialei, LI Kang, MELIKYAN MELIKYAN, YANG Lin, HOU Weimin. Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT251080

通过遗传算法优化和低成本CNC制造实现跨频带隐身的全金属超表面

doi: 10.11999/JEIT251080 cstr: 32379.14.JEIT251080
基金项目: 科技部国家重点研发计划(编号2022YFB4400400),国家自然科学基金(编号62105093, 62441401),国家重点实验室基础科学研究创新基金(IFN20230113),河北省重大科技支撑项目(24290201Z),河北省教育厅青年拔尖人才项目(BJK2023036)
详细信息
    作者简介:

    张明:男,副教授,研究方向为电磁超表面器件、电磁隐身材料

    张娜娇:女,博士生,研究方向为光电子器件

    李佳磊:男,硕士生,研究方向为电磁隐身材料智能设计

    李康:男,教授,研究方向为毫米波功率器件和太赫兹器件

    VazgenVazgen:男,教授,研究方向为微电子电路

    杨琳:女,副教授,研究方向为微波毫米波集成电路、无线通信射频前端芯片

    侯卫民:男,教授,阵列信号处理、无线通信

    通讯作者:

    侯卫民 hwm@hebust.edu.cn

  • 中图分类号: TN828.4; TN26

Genetic-Algorithm-Optimized All-Metal Metasurface for Cross-Band Stealth via Low-cost CNC Fabrication

Funds: National Key Research and Development Program of China (No. 2022YFB4400400), National Natural Science Foundation of China (No.62105093 and 62441401), National Key Laboratory of Basic Scientific Research for Innovation Fund (No. IFN20230113), the Major Science and Technology Support Project of Hebei Province (No.24290201Z), Science and Technology Project of Hebei Education Department (No. BJK2023036)
  • 摘要: 本文通过单一材料平台集成宽带微波散射(7.4 GHz带宽)与被动红外抑制,为跨波段隐身提供了一种解决方案,克服了传统隐身材料同时兼顾微波吸收与热管理之间的设计挑战。本文提出了一种新型全金属随机编码超表面,实现了跨波段隐身功能,兼具微波频段雷达散射截面(radar cross-section, RCS)缩减和红外隐身效果。该超表面整体采用铜结构,通过计算机数控加工制造,相比传统复合材料设计,消除了界面脱层的风险。同时,其单一材料构造使其能够同时调控微波散射特性和红外辐射特性。该结构通过遗传算法优化相位分布后,在11–18.4 GHz频段(73%带宽)内实现了超过10 dB的RCS缩减,在14.7 GHz频点处的最大抑制效果超过15 dB,相关结果已通过仿真和微波暗室测试验证。该全金属结构在8–14 μm红外波段展现出超过99.9%的红外反射率,且通过商业红外成像仪热成像实验证实其被动红外隐身能力,显示出在多光谱隐身应用中的潜力。所制造的CNC原型结构尺寸为150×150 mm2,包含10×10的单元阵列,在最大达60°的线极化斜入射角下仍保持良好的结构稳定性,验证了其在贴合式应用中推广的可行性。
  • 图  1  超表面的编码单元与相位分布图

    图  2  编码超表面的设计流程

    图  3  编码超表面的几何结构及其反射特性

    图  4  单元结构的电磁特性模拟结果

    图  5  不同参数下谐振环交叉偏振反射的仿真结果

    图  6  编码超表面仿真结果的相位分布、算法迭代过程及二维、三维远场散射图。第1列为不同编码超表面的相位分布;第2列为不同编码超表面的算法迭代过程;第3列为14.7 GHz 下不同编码超表面的二维散射图;第4列为 14.7 GHz 下不同编码超表面的三维远场散射图

    图  7  编码超表面仿真结果的RCS缩减及阵列分布

    图  8  基于 CNC 切割工艺的超表面器件制备流程示意图

    图  9  样品、实验装置及实验结果

    表  1  本工作的对比参考文献

    文献 相对带宽 RCS缩减带宽(GHz) 最大RCS缩减效果 结构类型 入射角度 是否跨波段
    [36] 31.25% 5.4–7.4 20 dB MIM 0–45
    [37] 9.09% 10.5–11.5 13 dB MIM NO
    [38] 28.32% 6.94–9.23 35.5 dB MIM 0–40
    [39] 31.31% 9.26–12.87/ 19.4 dB MIM NO
    [40] 35.46% 14.84–19.35 / ITO/I/ITO NO
    [41] 11.58% 5.8–8.3 About 19dB IR-ECD NO
    本工作 32.18% 11–18.4 15 dB All-Metal 0–60
    下载: 导出CSV
  • [1] RAN Yuzhou, SHI Lihua, WU Shuran, et al. Optically transparent ultrawideband electromagnetic stealth metasurface for microwave absorption and scattering[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(12): 2412–2416. doi: 10.1109/LAWP.2022.3194724.
    [2] 王谦喆, 何召阳, 宋博文, 等. 射频隐身技术研究综述[J]. 电子与信息学报, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945.

    WANG Qianzhe, HE Zhaoyang, SONG Bowen, et al. Overview on RF stealth technology research[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1505–1514. doi: 10.11999/JEIT170945.
    [3] YOUSSEF N N. Radar cross section of complex targets[J]. Proceedings of the IEEE, 1989, 77(5): 722–734. doi: 10.1109/5.32062.
    [4] HOSSAIN M B, FARUQUE M R I, ISLAM M T, et al. Triple band microwave metamaterial absorber based on double E-shaped symmetric split ring resonators for EMI shielding and stealth applications[J]. Journal of Materials Research and Technology, 2022, 18: 1653–1668. doi: 10.1016/j.jmrt.2022.03.079.
    [5] WU Yue, TAN Shujuan, ZHAO Yue, et al. Broadband multispectral compatible absorbers for radar, infrared and visible stealth application[J]. Progress in Materials Science, 2023, 135: 101088. doi: 10.1016/j.pmatsci.2023.101088.
    [6] GUO Lei, FANG Haiting, SUN Yuxiang, et al. A low-profile and broadband pattern-reconfigurable dielectric resonator antenna with wide spatial coverage[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(10): 8296–8301. doi: 10.1109/TAP.2023.3293013.
    [7] GUO Lei, LI Xuwang, SUN Wenjian, et al. Designing and modeling of a dual-band rectenna with compact dielectric resonator antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(5): 1046–1050. doi: 10.1109/LAWP.2022.3157322.
    [8] 王文涛, 黄家露. 基于有源对消的装甲目标被动毫米波隐身技术研究[J]. 电子与信息学报, 2022, 44(12): 4178–4184. doi: 10.11999/JEIT210944.

    WANG Wentao and HUANG Jialu. Research on passive millimeter-wave stealth technology based on active cancellation for armored target[J]. Journal of Electronics & Information Technology, 2022, 44(12): 4178–4184. doi: 10.11999/JEIT210944.
    [9] ZHANG Chengyun, ZHANG Bingfeng, GE Shuangkang, et al. Compatible metasurface for ultra-wideband radar and switchable infrared stealth[J]. Optics Express, 2024, 32(18): 31359–31374. doi: 10.1364/OE.533691.
    [10] HU Jie, BANDYOPADHYAY S, LIU Yuhui, et al. A review on metasurface: From principle to smart metadevices[J]. Frontiers in Physics, 2021, 8: 586087. doi: 10.3389/fphy.2020.586087.
    [11] WANG Hailin, MA Huifeng, CHEN Mao, et al. A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. doi: 10.1002/adfm.202100275.
    [12] 胡杰, 唐紫依, 蓝翔, 等. 基于相变材料 Ge2Sb2Se4Te1 的可切换边缘检测与聚焦成像超表面[J]. 光电工程, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284.

    HU Jie, TANG Ziyi, LAN Xiang, et al. Switchable edge detection and imaging based on a phase-change metasurface with Ge2Sb2Se4Te1[J]. Opto-Electronic Engineering, 2023, 50(8): 220284. doi: 10.12086/oee.2023.220284.
    [13] 马依泽, 李春树, 马鑫, 等. 基于超表面的极化转换和雷达散射截面缩减设计[J]. 光电工程, 2025, 52(10): 250183. doi: 10.12086/oee.2025.250183.

    MA Yize, LI Chunshu, MA Xin, et al. Design of polarization conversion and radar cross-section reduction based on metasurfaces[J]. Opto-Electronic Engineering, 2025, 52(10): 250183. doi: 10.12086/oee.2025.250183.
    [14] KHAN H A, MAJEED A, ZAHRA H, et al. Transparent conformal metasurface absorber for ultrawideband radar cross section reduction[J]. Journal of Physics D: Applied Physics, 2024, 57(13): 135105. doi: 10.1088/1361-6463/ad1951.
    [15] LI Yanling, XU Jianfeng, LIU Fuhai, et al. Broadband achromatic transmission stealth cloak based on all dielectric metasurfaces[J]. Physica Scripta, 2024, 99(7): 075536. doi: 10.1088/1402-4896/ad5803.
    [16] SHI Haoyang, TIAN Jie, CHEN Nengfu, et al. Wideband high-efficiency scattering reduction in a graphene based optically transparent and flexible metasurface[J]. Carbon, 2024, 225: 119150. doi: 10.1016/j.carbon.2024.119150.
    [17] LIU Yahong and ZHAO Xiaopeng. Perfect absorber metamaterial for designing low-RCS patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1473–1476. doi: 10.1109/LAWP.2014.2341299.
    [18] GUO Yuan, DUAN Yuping, LIU Xiaoji, et al. Construction of rGO/MOF-derived CNTs aerogel with multiple losses for multi-functional efficient electromagnetic wave absorber[J]. Carbon, 2024, 230: 119591. doi: 10.1016/j.carbon.2024.119591.
    [19] YANG Xuan, XUAN Lixin, MEN Weiwei, et al. Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range[J]. Chemical Engineering Journal, 2024, 491: 151862. doi: 10.1016/j.cej.2024.151862.
    [20] CHEN Wei, DUAN Yuping, GU Shude, et al. Resonator-free metamaterials based on ferromagnetic dielectrics for mandatory microwave loss and compact stealth cloaks[J]. Advanced Materials, 2025, 37(39): 2507366. doi: 10.1002/adma.202507366.
    [21] DUAN Yuping, XIA Chenyang, CHEN Wei, et al. A bio-inspired broadband absorption metamaterial: Driven by dual-structure synergistically induced current vortices[J]. Journal of Materials Science & Technology, 2025, 206: 193–201. doi: 10.1016/j.jmst.2024.03.053.
    [22] GUO Yuan, DUAN Yuping, GU Shude, et al. Carbon nanocoils-assisted formation of tunable pore graphene aerogels for lightweight broadband microwave absorption, thermal insulation, and antifreeze devices[J]. Small, 2025, 21(10): 2412270. doi: 10.1002/smll.202412270.
    [23] LI Zerui, DUAN Yuping, LIU Xiaoji, et al. Strategy-induced strong exchange interaction for enhancing high-temperature magnetic loss in high-entropy alloy powders[J]. Advanced Functional Materials, 2025, 35(44): 2507152. doi: 10.1002/adfm.202507152.
    [24] LIU Xiaoji, DUAN Yuping, WU Nan, et al. Modulating electromagnetic genes through Bi-phase high-entropy engineering toward temperature-stable ultra-broadband megahertz electromagnetic wave absorption[J]. Nano-Micro Letters, 2025, 17(1): 164. doi: 10.1007/s40820-024-01638-4.
    [25] ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954–2962. doi: 10.1109/TAP.2016.2562665.
    [26] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99.
    [27] XI Yan, JIANG Wen, WEI Kun, et al. Wideband RCS reduction of microstrip antenna array using coding metasurface with low Q resonators and fast optimization method[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(4): 656–660. doi: 10.1109/LAWP.2021.3138241.
    [28] XU Guoqing, KANG Qianlong, ZHANG Xizheng, et al. High-performance long-wavelength infrared Switchable stealth based on In3SbTe2 metasurface[J]. International Journal of Thermal Sciences, 2025, 207: 109392. doi: 10.1016/j.ijthermalsci.2024.109392.
    [29] WANG Lei, DONG Jian, ZHANG Wenjie, et al. Deep learning assisted optimization of metasurface for multi-band compatible infrared stealth and radiative thermal management[J]. Nanomaterials, 2023, 13(6): 1030. doi: 10.3390/nano13061030.
    [30] PANG Huifang, DUAN Yuping, HUANG Lingxi, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials[J]. Composites Part B: Engineering, 2021, 224: 109173. doi: 10.1016/j.compositesb.2021.109173.
    [31] KNOTT E F, SHAEFFER J F, and TULEY M T. Radar Cross Section[M]. 2nd ed. Raleigh: SciTech Publishing, 2004: 241.
    [32] SALISBURY J W, WALD A, and D’ARIA D M. Thermal-infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B6): 11897–11911. doi: 10.1029/93JB03600.
    [33] ZHANG Ming, ZHANG Najiao, DONG Peng, et al. All-metal coding metasurfaces for broadband terahertz RCS reduction and infrared invisibility[J]. Photonics, 2023, 10(9): 962. doi: 10.3390/photonics10090962.
    [34] LAMBORA A, GUPTA K, and CHOPRA K. Genetic algorithm- A literature review[C]. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 2019: 380–384. doi: 10.1109/COMITCon.2019.8862255.
    [35] SONG Rongguo, SI Yunfa, QIAN Wei, et al. Investigation of MXene nanosheets based radio-frequency electronics by skin depth effect[J]. Nano Research, 2024, 17(4): 3061–3067. doi: 10.1007/s12274-023-6127-7.
    [36] LIU Xiao, GAO Jun, XU Liming, et al. A coding diffuse metasurface for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 724–727. doi: 10.1109/LAWP.2016.2601108.
    [37] SAIFULLAH Y, WAQAS A B, YANG Guomin, et al. Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection[J]. Optics Express, 2020, 28(2): 1139–1149. doi: 10.1364/OE.383214.
    [38] HAN Xinmin, XU Haojun, CHANG Yipeng, et al. Multiple diffuse coding metasurface of independent polarization for RCS reduction[J]. IEEE Access, 2020, 8: 162313–162321. doi: 10.1109/ACCESS.2020.3021650.
    [39] FU Changfeng, HAN Lianfu, LIU Chao, et al. Combining pancharatnam–berry phase and conformal coding metasurface for dual-band RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(3): 2352–2357. doi: 10.1109/TAP.2021.3112618.
    [40] XU Cuilian, WANG Binke, YAN Mingbao, et al. An optically transparent sandwich structure for radar-infrared bi-stealth[J]. Infrared Physics & Technology, 2020, 105: 103108. doi: 10.1016/j.infrared.2019.103108.
    [41] ZHANG Zekui, ZHANG Leipeng, REN Zichen, et al. Multifunctional ultrathin metasurface with a low radar cross section and variable infrared emissivity[J]. ACS Applied Materials & Interfaces, 2024, 16(16): 21109–21117. doi: 10.1021/acsami.4c01798.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-30
  • 录用日期:  2026-01-30
  • 网络出版日期:  2026-02-14

目录

    /

    返回文章
    返回