高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可控多双涡卷忆阻Hopfield神经网络建模及其动力学分析

刘嵩 李子涵 邱达 罗敏 赖强

刘嵩, 李子涵, 邱达, 罗敏, 赖强. 可控多双涡卷忆阻Hopfield神经网络建模及其动力学分析[J]. 电子与信息学报. doi: 10.11999/JEIT250972
引用本文: 刘嵩, 李子涵, 邱达, 罗敏, 赖强. 可控多双涡卷忆阻Hopfield神经网络建模及其动力学分析[J]. 电子与信息学报. doi: 10.11999/JEIT250972
LIU Song, LI Zihan, QIU Da, LUO Min, LAI Qiang. Modeling and Dynamic Analysis of Controllable Multi-Double Scroll Memristor Hopfield Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250972
Citation: LIU Song, LI Zihan, QIU Da, LUO Min, LAI Qiang. Modeling and Dynamic Analysis of Controllable Multi-Double Scroll Memristor Hopfield Neural Network[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250972

可控多双涡卷忆阻Hopfield神经网络建模及其动力学分析

doi: 10.11999/JEIT250972 cstr: 32379.14.JEIT250972
基金项目: 湖北省自然科学基金 (2024AFD068),中国高校产学研创新基金(2024IT115)
详细信息
    作者简介:

    刘嵩:男,副教授,研究方向为混沌理论,忆阻神经网络,信息安全,智能控制

    李子涵:男,硕士生,研究方向为忆阻神经网络

    邱达:男,工程师,研究方向为智能检测与控制,光纤光栅传感,滑模切换系统,忆阻混沌系统

    罗敏:女,副教授,研究方向为混沌理论,忆阻电路,模式识别,光电信号处理

    赖强:男,教授,研究方向为混沌理论与应用、信息安全、忆阻电路、神经网络、多智能体系统、人工智能

    通讯作者:

    刘嵩 liusong@hbmzu.edu.cn

  • 中图分类号: TM132; TN711.4

Modeling and Dynamic Analysis of Controllable Multi-Double Scroll Memristor Hopfield Neural Network

Funds: Natural Science Foundation of Hubei Province of China (2024AFD068), the Fund of China University Research Innovation (2024IT115)
  • 摘要: 忆阻Hopfield神经网络是一种类脑神经网络,能够产生丰富的动力学行为。该文提出了一种新型包含反正切函数序列的忆阻器,将忆阻器耦合至神经网络中,可构建出一类包含电磁辐射与忆阻突触权重的忆阻全连接Hopfield神经网络。理论分析和数值仿真结果均表明,该模型可在相空间内生成单向、双向和三向多双涡旋混沌吸引子。进一步研究还发现,通过改变初始条件,发现该模型存在多个具有初始偏移增强特征的多双涡卷混沌吸引子,它们形状相同但位置不同,并且吸引子的数量以及双涡卷的个数均可控。此外改变忆阻突触耦合强度,结合分岔图和Lyapunov指数谱,发现该系统还存在丰富的共存对称吸引子,包括对称的周期吸引子与单涡卷混沌吸引子。最后基于FPGA平台完成了该系统的硬件实现,验证了该系统的物理存在性与可行性。
  • 图  1  忆阻器特征

    图  2  忆阻Hopfield神经网络拓扑结构

    图  3  局部曲线图与吸引子相图

    图  4  模型1基于$ {\varphi }_{1} $方向可调控的多双涡卷混沌吸引子相图以及分岔图

    图  5  模型2网格多双涡卷混沌吸引子

    图  6  模型3网格多双涡卷混沌吸引子

    图  7  模型2随忆阻强度变化的动力学行为

    图  8  模型2共存对称吸引子

    图  9  模型1随初值$ {\varphi }_{1}(0) $变化的动力学行为

    图  10  模型2随初值$ {\varphi }_{2}(0) $变化的动力学行为

    图  11  模型2随初值$ {\varphi }_{1}(0) $变化的动力学行为

    图  12  模型3随初值$ {\varphi }_{3}(0) $变化的动力学行为

    图  13  硬件实现平台

    图  14  FPGA硬件实现结果

    表  1  忆阻神经网络模型与参数

    编号模型固定参数拓扑图
    $ \begin{cases} {\dot{x}}_{1}=-{x}_{1}+2.22\tanh ({x}_{1})-1.21\tanh ({x}_{2})+0.5\tanh ({x}_{3})\\ {\dot{x}}_{2}=-{x}_{2}+2.1\tanh ({x}_{1})+1.7\tanh ({x}_{2})+1.15\tanh ({x}_{3})\\ {\dot{x}}_{3}=-{x}_{3}-4.75\tanh ({x}_{1})+0.1\tanh ({x}_{2})-1.135\tanh ({x}_{3})\\ \end{cases} $图2(a)
    1$ \begin{cases} {\dot{x}}_{1}=-{x}_{1}+2.22\tanh ({x}_{1})-1.21\tanh ({x}_{2})+0.5\tanh ({x}_{3})\\ {\dot{x}}_{2}=-{x}_{2}+2.1\tanh ({x}_{1})+1.7\tanh ({x}_{2})+1.15\tanh ({x}_{3})\\ {\dot{x}}_{3}=-{x}_{3}-4.75\tanh ({x}_{1})+0.1\tanh ({x}_{2})+{W}_{1}({\varphi }_{1})\tanh ({x}_{3})\\ {\dot{\varphi }}_{1}=-{b}_{1}f({\varphi }_{1})+{\mathrm{a}}_{1}\tanh ({x}_{3})\\ \end{cases} $$ {b}_{1}=1.39 $
    $ {\alpha }_{1}=1 $
    $ {\beta }_{1}=0.001 $
    图2(b)
    2$ \begin{cases} {\dot{x}}_{1}=-{x}_{1}+2.22\tanh ({x}_{1})-1.21\tanh ({x}_{2})+0.5\tanh ({x}_{3})\\ {\dot{x}}_{2}=-{x}_{2}+2.1\tanh ({x}_{1})+1.7\tanh ({x}_{2})+1.15\tanh ({x}_{3})\\ {\dot{x}}_{3}=-{x}_{3}-4.75\tanh ({x}_{1})+{W}_{2}({\varphi }_{2})\tanh ({x}_{2})+{W}_{1}({\varphi }_{1})\tanh ({x}_{3})\\ {\dot{\varphi }}_{1}=-{b}_{1}f({\varphi }_{1})+{\mathrm{a}}_{1}\tanh ({x}_{3})\\ {\dot{\varphi }}_{2}=-{b}_{2}f({\varphi }_{2})+{\mathrm{a}}_{2}\tanh ({x}_{2})\\ \end{cases} $$ {b}_{2}=1.385 $
    $ {\alpha }_{2}=1 $
    $ {\beta }_{2}=0.001 $
    其余参数与上一致
    图2(c)
    3$ \begin{cases} {\dot{x}}_{1}=-{x}_{1}+2.22\tanh ({x}_{1})-1.21\tanh ({x}_{2})+0.5\tanh ({x}_{3})+{W}_{3}({\varphi }_{3}){x}_{1}\\ {\dot{x}}_{2}=-{x}_{2}+2.1\tanh ({x}_{1})+1.7\tanh ({x}_{2})+1.15\tanh ({x}_{3})\\ {\dot{x}}_{3}=-{x}_{3}-4.75\tanh ({x}_{1})+{W}_{2}({\varphi }_{2})\tanh ({x}_{2})+{W}_{1}({\varphi }_{1})\tanh ({x}_{3})\\ {\dot{\varphi }}_{1}=-{b}_{1}f({\varphi }_{1})+{\mathrm{a}}_{1}\tanh ({x}_{3})\\ {\dot{\varphi }}_{2}=-{b}_{2}f({\varphi }_{2})+{\mathrm{a}}_{2}\tanh ({x}_{2})\\ {\dot{\varphi }}_{3}=-{b}_{3}f({\varphi }_{3})+{a}_{3}{x}_{1}\\ \end{cases} $$ {b}_{3}=1.4 $
    $ {b}_{3}=1.4 $
    $ {\beta }_{3}=0.001 $
    其余参数与上一致
    图2(d)
    下载: 导出CSV

    表  2  模型2平衡点,特征值及平衡点类型

    平衡点 特征值 平衡点类型
    (0,0,0,0,0)
    (0,0,0,0,±2)
    (0,0,0,±2,0)
    (0,0,0,±2,±2)
    –1.390, –1.385, 0.513, –0.364±1.340i 指标-1鞍焦点
    (–0.422, –0.066, 1.016, 0.870, –0.142)
    (–0.422, –0.066, 1.016, 0.870, –0.142±2)
    (–0.422, –0.066, 1.016, 0.870±2, –0.142)
    (–0.422, –0.066, 1.016, 0.870±2, –0.142±2)
    –1.389, –1.385, –0.676, 0.384±1.259i 指标-2鞍焦点
    (0.422, 0.066, –1.016, –0.870, 0.142)
    (0.422, 0.066, –1.016, –0.870, 0.142±2)
    (0.422, 0.066, –1.016, –0.870±2, 0.142)
    (0.422, 0.066, –1.016, –0.870±2, 0.142±2)
    –1.389, –1.385, –0.676, 0.384±1.259i 指标-2鞍焦点
    下载: 导出CSV

    表  3  双涡卷个数与pq值之间的关系

    p吸引子含有多双涡卷个数q吸引子含有多双涡卷个数
    0102
    1314
    2526
    ············
    p2p+1q2q+2
    下载: 导出CSV

    表  4  模型2不同忆阻强度k2对应的共存吸引子类别以及编号

    忆阻强度k2 共存对称吸引子类别 对应编号
    –1.2 共存周期1吸引子 图8(a)
    –0.8 共存周期2吸引子 图8(b)
    –0.5 共存周期4吸引子 图8(c)
    –0.1 共存单涡卷混沌吸引子 图8(d)
    下载: 导出CSV
  • [1] LIN Hairong, WANG Chunhua, CHEN Chengjie, et al. Neural bursting and synchronization emulated by neural networks and circuits[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(8): 3397–3410. doi: 10.1109/TCSI.2021.3081150.
    [2] WANG Chunhua, LI Yufei, YANG Gang, et al. A review of fractional-order chaotic systems of memristive neural networks[J]. Mathematics, 2025, 13(10): 1600. doi: 10.3390/math13101600.
    [3] BAO Bocheng, ZHOU Chunlong, BAO Han, et al. Heterogeneous Hopfield neural network with analog implementation[J]. Chaos, Solitons & Fractals, 2025, 194: 116234. doi: 10.1016/j.chaos.2025.116234.
    [4] DENG Quanli, WANG Chunhua, SUN Yichuang, et al. Delay difference feedback memristive map: Dynamics, hardware implementation, and application in path planning[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2025, 72(12): 7993–8003. doi: 10.1109/TCSI.2025.3571961.
    [5] LUO Min, WANG Pingli, QIU Da, et al. Analysis and application of conditionally symmetric memristive chaotic systems with attractor growth phenomena[J]. Chaos, Solitons & Fractals, 2025, 200: 117027. doi: 10.1016/j.chaos.2025.117027.
    [6] 赖强, 王君. 基于滑模趋近律的忆阻混沌系统有限和固定时间同步[J]. 物理学报, 2024, 73(18): 180503. doi: 10.7498/aps.73.20241013.

    LAI Qiang and WANG Jun. Finite and fixed-time synchronization of memristive chaotic systems based on sliding mode reaching law[J]. Acta Physica Sinica, 2024, 73(18): 180503. doi: 10.7498/aps.73.20241013.
    [7] 赖强, 秦铭宏. 基于忆阻电磁辐射的极简环形HNN动力学行为增强研究[J]. 贵州师范大学学报: 自然科学版, 2025, 43(3): 1–11. doi: 10.16614/j.gznuj.zrb.2025.03.001.

    LAI Qiang and QIN Minghong. Enhanced dynamics of an extremely simple cyclic HNN based on memristive electromagnetic radiation[J]. Journal of Guizhou Normal University: Natural Sciences, 2025, 43(3): 1–11. doi: 10.16614/j.gznuj.zrb.2025.03.001.
    [8] 贾美美, 曹佳伟, 白明明. 新型忆阻耦合异质神经元的放电模式和预定义时间混沌同步[J]. 物理学报, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872.

    JIA Meimei, CAO Jiawei, and BAI Mingming. Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron[J]. Acta Physica Sinica, 2024, 73(17): 170502. doi: 10.7498/aps.73.20240872.
    [9] ZHANG Sen, LI Yongxin, WANG Xiaoping, et al. Initial offset-boosted coexisting hidden chaos and firing multistability in memristive ring neural network with hardware implementation[J]. IEEE Transactions on Industrial Electronics, 2025, 72(2): 2024–2033. doi: 10.1109/TIE.2024.3429616.
    [10] DOUBLA I S, RAMAKRISHNAN B, TABEKOUENG Z N, et al. Infinitely many coexisting hidden attractors in a new hyperbolic-type memristor-based HNN[J]. The European Physical Journal Special Topics, 2022, 231(11): 2371–2385. doi: 10.1140/epjs/s11734-021-00372-x.
    [11] BIAMOU A L M, TAMBA V K, TAGNE F K, et al. Fractional-order-induced symmetric multi-scroll chaotic attractors and double bubble bifurcations in a memristive coupled Hopfield neural networks[J]. Chaos, Solitons & Fractals, 2024, 178: 114267. doi: 10.1016/j.chaos.2023.114267.
    [12] DENG Quanli, WANG Chunhua, SUN Yichuang, et al. Discrete memristive conservative chaotic map: Dynamics, hardware implementation, and application in secure communication[J]. IEEE Transactions on Cybernetics, 2025, 55(8): 3926–3934. doi: 10.1109/TCYB.2025.3565333.
    [13] 武花干, 边逸轩, 陈墨, 等. 忆阻耦合异构忆阻细胞神经网络的多稳态与相位同步研究[J]. 电子与信息学报, 2024, 46(9): 3818–3826. doi: 10.11999/JEIT240010.

    WU Huagan, BIAN Yixuan, CHEN Mo, et al. Multistable state and phase synchronization of memristor-coupled heterogeneous memristive cellular neural network[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3818–3826. doi: 10.11999/JEIT240010.
    [14] 丁大为, 卢小齐, 胡永兵, 等. 分数阶忆阻耦合异质神经元的多稳态及硬件实现[J]. 物理学报, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525.

    DING Dawei, LU Xiaoqi, HU Yongbing, et al. Multistability of fractional-order memristor-coupled heterogeneous neurons and its hardware realization[J]. Acta Physica Sinica, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525.
    [15] 赖强, 秦铭宏. 极简环形忆阻混沌神经网络的动力学分析与同步控制[J]. 电子与信息学报, 2025, 47(9): 3262–3273. doi: 10.11999/JEIT250212.

    LAI Qiang and QIN Minghong. Dynamic analysis and synchronization control of extremely simple cyclic memristive chaotic neural network[J]. Journal of Electronics & Information Technology, 2025, 47(9): 3262–3273. doi: 10.11999/JEIT250212.
    [16] BAO Han, HUA Mengjie, MA Jun, et al. Offset-control plane coexisting behaviors in two-memristor-based Hopfield neural network[J]. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10526–10535. doi: 10.1109/TIE.2022.3222607.
    [17] WANG Chunhua, LIANG Junhui, and DENG Quanli. Dynamics of heterogeneous Hopfield neural network with adaptive activation function based on memristor[J]. Neural Networks, 2024, 178: 106408. doi: 10.1016/j.neunet.2024.106408.
    [18] LI Xuxin, LUO Min, ZHANG Bo, et al. Dynamic analysis and implementation of a multi-stable Hopfield neural network[J]. Chaos, Solitons & Fractals, 2025, 199: 116657. doi: 10.1016/j.chaos.2025.116657.
    [19] LI Haoyu, WANG Leimin, WAN Xiongbo, et al. Error transmission of chaos-based image encryption: Application to smart grid[J]. IEEE Transactions on Industrial Informatics, 2025, 21(12): 9889–9897. doi: 10.1109/TII.2025.3609139.
    [20] WU Chaojun, GUO Junxuan, YANG Ningning, et al. Analysis of piecewise-linear Hopfield neural network model based on a novel fractional-order memristor and its application to image encryption[J]. International Journal of Bifurcation and Chaos, 2025, 35(6): 2550065. doi: 10.1142/S0218127425500658.
    [21] L I Yongxin, LI Chunbiao, LEI Tengfei, et al. Offset boosting-entangled complex dynamics in the memristive Rulkov neuron[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8): 9569–9579. doi: 10.1109/TIE.2023.3325558.
    [22] 王雷敏, 程佳俊, 胡成, 等. 基于改进的忆阻器在字符联想记忆中的应用[J]. 电子与信息学报, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.

    WANG Leimin, CHENG Jiajun, HU Cheng, et al. Application of improved memristor in character associative memory[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2667–2674. doi: 10.11999/JEIT220709.
    [23] WANG Chunhua, TANG Dong, LIN Hairong, et al. High-dimensional memristive neural network and its application in commercial data encryption communication[J]. Expert Systems with Applications, 2024, 242: 122513. doi: 10.1016/j.eswa.2023.122513.
    [24] BAO Han, DING Ruoyu, LIU Xiaofeng, et al. Memristor-cascaded Hopfield neural network with attractor scroll growth and STM32 hardware experiment[J]. Integration, 2024, 96: 102164. doi: 10.1016/j.vlsi.2024.102164.
    [25] LI Yongxin, LI Chunbiao, ZHANG Sen, et al. Offset boosting-oriented construction of multi-scroll attractor via a memristor model[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2025, 72(2): 918–931. doi: 10.1109/TCSI.2024.3455350.
    [26] ZHANG Sen, CHEN Chengjie, ZHANG Yunzhen, et al. Multidirectional multidouble-scroll hopfield neural network with application to image encryption[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(1): 735–746. doi: 10.1109/TSMC.2024.3489226.
    [27] LAI Qiang, WAN Zhiqiang, ZHANG Hui, et al. Design and analysis of multiscroll memristive Hopfield neural network with adjustable memductance and application to image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7824–7837. doi: 10.1109/TNNLS.2022.3146570.
    [28] LI Jianghao, WANG Chunhua, and DENG Quanli. Symmetric multi-double-scroll attractors in Hopfield neural network under pulse controlled memristor[J]. Nonlinear Dynamics, 2024, 112(16): 14463–14477. doi: 10.1007/s11071-024-09791-6.
    [29] WAN Qiuzhen, CHEN Simiao, YANG Qiao, et al. Grid multi-scroll attractors in memristive Hopfield neural network under pulse current stimulation and multi-piecewise memristor[J]. Nonlinear Dynamics, 2023, 111(19): 18505–18521. doi: 10.1007/s11071–023-08834–8.
    [30] TANG Dong, WANG Chunhua, LIN Hairong, et al. Dynamics analysis and hardware implementation of multi-scroll hyperchaotic hidden attractors based on locally active memristive Hopfield neural network[J]. Nonlinear Dynamics, 2024, 112(2): 1511–1527. doi: 10.1007/s11071-023-09128-9.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-01
  • 录用日期:  2025-12-01
  • 网络出版日期:  2025-12-09

目录

    /

    返回文章
    返回