高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向图像恢复任务的语义通信网络能耗优化

陈阳 马欢 姬智 李英奇 梁佳宇 郭兰

陈阳, 马欢, 姬智, 李英奇, 梁佳宇, 郭兰. 面向图像恢复任务的语义通信网络能耗优化[J]. 电子与信息学报. doi: 10.11999/JEIT250915
引用本文: 陈阳, 马欢, 姬智, 李英奇, 梁佳宇, 郭兰. 面向图像恢复任务的语义通信网络能耗优化[J]. 电子与信息学报. doi: 10.11999/JEIT250915
CHEN Yang, MA Huan, JI Zhi, LI Ying Qi, LIANG Jia Yu, GUO Lan. Optimization of Energy Consumption in Semantic Communication Networks for Image Recovery Tasks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250915
Citation: CHEN Yang, MA Huan, JI Zhi, LI Ying Qi, LIANG Jia Yu, GUO Lan. Optimization of Energy Consumption in Semantic Communication Networks for Image Recovery Tasks[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250915

面向图像恢复任务的语义通信网络能耗优化

doi: 10.11999/JEIT250915 cstr: 32379.14.JEIT250915
基金项目: 国家优秀青年科学基金项目(编号:62122094),江苏省科技计划项目(编号:BK20253031)
详细信息
    作者简介:

    陈阳:男,在读博士生,研究方向为面向任务的多模态语义通信资源管理

    马欢:男,高级工程师,研究方向为通信信号分析与处理

    通讯作者:

    陈阳 chenyangbabm@126.com

  • 中图分类号: TP393.1

Optimization of Energy Consumption in Semantic Communication Networks for Image Recovery Tasks

  • 摘要: 针对语义通信网络在图像恢复任务中计算和传输能耗过高的问题,该文提出一种改进型多智能体近端策略优化算法驱动的网络能耗优化策略,以在保障任务性能的同时最小化网络总能耗。首先,量化分析了语义提取率、发射功率、计算资源与网络能耗间的耦合关系。随后,构建以小区总能耗最小化为目标,同时满足时延、图像恢复质量等多维约束的优化模型。最后,设计改进型多智能体近端策略优化算法对该模型进行求解。仿真结果表明,与基准算法相比,该文所提算法在维持相当能耗水平的同时,训练收敛速度提升66.7%-80%,网络能耗和用户时延稳定性显著提升,并能有效降低平均误符号率。
  • 图  1  单小区语义通信网络示意图

    图  2  用户与基站通过上行链路进行图像传输与恢复过程示意图

    图  3  不同算法下网络链路速率性能示意图

    图  4  多小区场景不同算法网络性能示意图

    表  1  仿真参数

    仿真参数 参数值
    小区数量 1
    基站天线数量Nr 32
    小区用户数量M 25
    用户天线数量 1
    用户最大发射功率Pk 100 mw
    功率$ \left\{{p}_{level1},{p}_{level2},{p}_{level3},{p}_{level4}\right\} $ {25 mw, 50 mw, 75 mw,
    100 mw}
    语义提取率$ \{{\rho }_{level1},{\rho }_{level2}, $
    ${\rho }_{level3},{\rho }_{level4},{\rho }_{level5},{\rho }_{level6}\} $
    {1/6,2/6,3/6,4/6,5/6,1}
    小区半径 900 m
    用户上行信道带宽W 1 MHz
    能耗系数$ \kappa $ 10–28
    时延约束$ {t}_{th} $ 100 ms
    用户计算容量f 2 GHz
    ECIW计算容量$ {F}_{\max } $ 25 GHz
    噪声功率 –174 dBm/Hz
    下载: 导出CSV

    表  2  所提算法与基准算法的网络误符号性能对比

    算法所有用户每回合
    最大平均误符号率均值
    所有用户每回合
    最大平均误符号率方差
    所提算法$ 1.3796\times {10}^{-4} $$ 6.5535\times {10}^{-7} $
    MAPPO$ 1.4420\times {10}^{-4} $$ 6.8344\times {10}^{-7} $
    LSTM-MAPPO$ \text{1.5349}\times {\text{10}}^{\text{-4}} $$ 7.8464\times {10}^{-7} $
    NOISE-MAPPO$ \text{1.6489}\times {\text{10}}^{\text{-4}} $$ 7.2612\times {10}^{-7} $
    MADDPG$ \text{1.5251}\times {\text{10}}^{\text{-4}} $$ 7.1457\times {10}^{-7} $
    贪婪算法$ \text{8.9753}\times {\text{10}}^{\text{-3}} $$ 6.5866\times {10}^{-6} $
    下载: 导出CSV

    表  4  所提算法与基准算法的图像恢复性能对比(Imagenet数据集)

    算法所有用户每回合
    平均峰值信噪比均值(dB)
    所有用户每回合
    平均峰值信噪比方差
    所提算法30.13450.0017
    MAPPO30.10050.0024
    LSTM-MAPPO29.52460.0084
    NOISE-MAPPO29.34710.0101
    MADDPG28.85620.0075
    贪婪算法11.11750.0159
    下载: 导出CSV

    表  3  所提算法与基准算法的图像恢复性能对比(MNIST数据集)

    算法所有用户每回合
    平均峰值信噪比均值(dB)
    所有用户每回合
    平均峰值信噪比方差
    所提算法35.14750.0026
    MAPPO35.10050.0054
    LSTM-MAPPO34.54870.0097
    NOISE-MAPPO34.22110.0097
    MADDPG33.92560.0065
    贪婪算法15.66240.0219
    下载: 导出CSV
  • [1] 张平. 语义通信: 未来通信系统的智简之道[J]. 中兴通讯技术, 2024, 30(1): 1. doi: 10.12142/ZTETJ.202401001.

    ZHANG Ping. Semantic communication: The intelligent and concise way to the future communication system[J]. ZTE Technology Journal, 2024, 30(1): 1. doi: 10.12142/ZTETJ.202401001.
    [2] 朱政宇, 梁馨月, 孙钢灿, 等. 智能超表面赋能语义通信系统研究综述[J]. 电子与信息学报, 2025, 47(2): 287–295. doi: 10.11999/JEIT240984.

    ZHU Zhengyu, LIANG Xinyue, SUN Gangcan, et al. Research overview of reconfigurable intelligent surface enabled semantic communication systems[J]. Journal of Electronics & Information Technology, 2025, 47(2): 287–295. doi: 10.11999/JEIT240984.
    [3] ZHANG Ping, LIU Yiming, SONG Yile, et al. Advances and challenges in semantic communications: A systematic review[J]. National Science Open, 2024, 3(4): 20230029. doi: 10.1360/nso/20230029.
    [4] SHAO Yulin, CAO Qi, and GÜNDÜZ D. A theory of semantic communication[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 12211–12228. doi: 10.1109/TMC.2024.3406375.
    [5] PENG Xiang, QIN Zhijin, TAO Xiaoming, et al. A robust image semantic communication system with multi-scale vision transformer[J]. IEEE Journal on Selected Areas in Communications, 2025, 43(4): 1278–1291. doi: 10.1109/JSAC.2025.3531413.
    [6] VAN CHIEN T, PHONG L H, PHUC D X, et al. Image restoration under semantic communications[C]. 2022 International Conference on Advanced Technologies for Communications, Ha Noi, Vietnam, 2022: 332–337. DOI: 10.1109/ATC55345.2022.9943000.
    [7] ZHANG Guangyi, HU Qiyu, QIN Zhijin, et al. A unified multi-task semantic communication system for multimodal data[J]. IEEE Transactions on Communications, 2024, 72(7): 4101–4116. doi: 10.1109/TCOMM.2024.3364990.
    [8] YAN Zhigang and LI Dong. Semantic communications for digital signals via carrier images[J]. IEEE Wireless Communications Letters, 2025, 14(6): 1816–1820. doi: 10.1109/LWC.2025.3557843.
    [9] LIANG Chengyang and LI Dong. Image generation with supervised selection based on multimodal features for semantic communications[J]. IEEE Transactions on Communications. doi: 10.1109/TCOMM.2025.3615798.
    [10] DAI Jincheng, WANG Sixian, TAN Kailin, et al. Nonlinear transform source-channel coding for semantic communications[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(8): 2300–2316. doi: 10.1109/JSAC.2022.3180802.
    [11] YANG Pujing, ZHANG Guangyi, and CAI Yunlong. Rate-adaptive generative semantic communication using conditional diffusion models[J]. IEEE Wireless Communications Letters, 2025, 14(2): 539–543. doi: 10.1109/LWC.2024.3515656.
    [12] YUAN Weiwen, REN Jinke, WANG Chongjie, et al. Generative semantic communication for joint image transmission and segmentation[C]. 2025 IEEE International Conference on Communications Workshops, Montreal, Canada, 2025: 1110–1115. doi: 10.1109/ICCWorkshops67674.2025.11162317.
    [13] ZHANG Guangyi, YANG Pujing, CAI Yunlong, et al. From analog to digital: Multi-order digital joint coding-modulation for semantic communication[J]. IEEE Transactions on Communications, 2025, 73(6): 4257–4271. doi: 10.1109/TCOMM.2024.3511949.
    [14] TUNG T Y, KURKA D B, JANKOWSKI M, et al. DeepJSCC-Q: Constellation constrained deep joint source-channel coding[J]. IEEE Journal on Selected Areas in Information Theory, 2022, 3(4): 720–731. doi: 10.1109/JSAIT.2022.3231042.
    [15] YANG Zhaohui, CHEN Mingzhe, ZHANG Zhaoyang, et al. Energy efficient semantic communication over wireless networks with rate splitting[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1484–1495. doi: 10.1109/JSAC.2023.3240713.
    [16] ZHANG Hongwei, SHAO Shuo, TAO Meixia, et al. Deep learning-enabled semantic communication systems with task-unaware transmitter and dynamic data[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(1): 170–185. doi: 10.1109/JSAC.2022.3221991.
    [17] 翟凯. 基于MMSE检测的MIMO及大规模MIMO系统性能精确分析[D]. [博士论文], 西南交通大学, 2021. doi: 10.27414/d.cnki.gxnju.2021.000015.

    ZHAI Kai. Exact performance analysis of MIMO and massive MIMO systems with MMSE receiver[D]. [Ph. D. dissertation], Southwest Jiaotong University, 2021. doi: 10.27414/d.cnki.gxnju.2021.000015.
    [18] QIN Langtian, LU Hancheng, CHEN Yuang, et al. Toward decentralized task offloading and resource allocation in user-centric MEC[J]. IEEE Transactions on Mobile Computing, 2024, 23(12): 11807–11823. doi: 10.1109/TMC.2024.3399766.
    [19] 张峻伟, 吕帅, 张正昊, 等. 基于样本效率优化的深度强化学习方法综述[J]. 软件学报, 2022, 33(11): 4217–4238. doi: 10.13328/j.cnki.jos.006391.

    ZHANG Junwei, LÜ Shuai, ZHANG Zhenghao, et al. Survey on deep reinforcement learning methods based on sample efficiency optimization[J]. Journal of Software, 2022, 33(11): 4217–4238. doi: 10.13328/j.cnki.jos.006391.
    [20] HU Siyue and HU Jian. Noisy-MAPPO: Noisy advantage values for cooperative multi-agent actor-critic methods[J]. arXiv: 2106.14334v1, 2021. doi: 10.48550/arXiv.2106.14334. (查阅网上资料,未能确认文献类型,请确认).
    [21] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[J]. arXiv: 1707.06347, 2017. doi: 10.48550/arXiv.1707.06347.(查阅网上资料,未能确认文献类型,请确认).
    [22] LILLICRAP T P, HUNT J J, Pritzel A, et al. Continuous control with deep reinforcement learning[C]. Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2016.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-08
  • 录用日期:  2025-12-08
  • 网络出版日期:  2025-12-13

目录

    /

    返回文章
    返回