高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌套多芒星的全着色

苏榕进 方刚 朱恩强 许进

苏榕进, 方刚, 朱恩强, 许进. 嵌套多芒星的全着色[J]. 电子与信息学报. doi: 10.11999/JEIT250861
引用本文: 苏榕进, 方刚, 朱恩强, 许进. 嵌套多芒星的全着色[J]. 电子与信息学报. doi: 10.11999/JEIT250861
SU Rongjin, FANG Gang, ZHU Enqiang, XU Jin. Total Coloring on Planar Graphs of Nested n-Pointed Stars[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250861
Citation: SU Rongjin, FANG Gang, ZHU Enqiang, XU Jin. Total Coloring on Planar Graphs of Nested n-Pointed Stars[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250861

嵌套多芒星的全着色

doi: 10.11999/JEIT250861 cstr: 32379.14.JEIT250861
基金项目: 国家自然科学基金(62272115, 62541308)
详细信息
    作者简介:

    苏榕进:男,硕士生,研究方向为图论及其应用

    方刚:男,教授,研究方向为生物计算、模式识别

    朱恩强:男,教授,研究方向为图论及其应用、组合优化

    许进:男,教授,研究方向为理论计算机、图论与组合优化

    通讯作者:

    朱恩强 sailingzeq@gmail.com

  • 中图分类号: O157.5

Total Coloring on Planar Graphs of Nested n-Pointed Stars

Funds: The National Natural Science Foundation of China (62272115, 62541308)
  • 摘要:Gk-全着色是指使用k种颜色对图的顶点与边同时进行着色,使得任意相邻的顶点、相邻的边,以及任意关联的顶点与边之间均着不同颜色。全着色猜想断言:任何简单图均存在(Δ+2)-全着色,其中Δ代表图的最大度。自该猜想提出以来,一直受到广泛关注,并取得了丰富的研究进展。然而,尽管经过数十年的努力,全着色猜想至今仍未得到完全证明,甚至对平面图情形亦不例外。目前,对于平面图,仅剩最大度为6且同时含有4-扇子结构,或最大平均度不低于23/5的图类尚未被证实。本文针对这类平面图的全着色展开研究,提出了一类称为嵌套多芒星的图类,其最大度为6、包含4-扇子结构,且最大平均度不低于23/5。我们证明了全着色猜想在此类图上成立。特别地,我们发现一类属于I-型图的嵌套多芒星,即存在7-全着色。这一结果进一步推进了对平面图全着色问题的理解。
  • 图  1  一个7-全着色实例

    图  2  一个4-扇

    图  3  嵌套8-芒星

    图  4  多芒星和嵌套多芒星

    图  5  对图$ G_{n}^{l} $的顶点和边进行全着色

    图  6  $ G_{6m}^{1} $的7-全着色和$ G_{6m}^{2} $的7-全着色

    图  7  $ G_{6m}^{3} $的两个7-全着色

    图  8  $ G_{6m-3}^{1} $的7-全着色和$ G_{6m-3}^{2} $的7-全着色

    图  9  $ G_{6m-3}^{3} $的两个7-全着色

  • [1] BEHZAD M. Graphs and their chromatic numbers[D]. [Ph. D. dissertation], Michigan State University, 1965.
    [2] VIZING V G. Some unsolved problems in graph theory[J]. Russian Mathematical Surveys, 1968, 23(6): 125–141. doi: 10.1070/RM1968v023n06ABEH001252.
    [3] ROSENFELD M. On the total coloring of certain graphs[J]. Israel Journal of Mathematics, 1971, 9(3): 396–402. doi: 10.1007/BF02771690.
    [4] VIJAYADITYA N. On total chromatic number of a graph[J]. Journal of the London Mathematical Society, 1971, s2-3(3): 405–408. doi: 10.1112/jlms/s2-3.3.405.
    [5] KOSTOCHKA A V. The total coloring of a multigraph with maximal degree 4[J]. Discrete Mathematics, 1977, 17(2): 161–163. doi: 10.1016/0012-365X(77)90146-7.
    [6] KOSTOCHKA A V. The total chromatic number of any multigraph with maximum degree five is at most seven[J]. Discrete Mathematics, 1996, 162(1/3): 199–214. doi: 10.1016/0012-365X(95)00286-6.
    [7] DALAL A, MCDONALD J, and SHAN S L. Total coloring graphs with large maximum degree[J]. Journal of Graph Theory, 2025, 110(3): 249–262. doi: 10.1002/jgt.23268.
    [8] COUTO F, FERRAZ D A, and KLEIN S. New results on edge-coloring and total-coloring of split graphs[J]. Discrete Applied Mathematics, 2025, 360: 297–306. doi: 10.1016/j.dam.2024.09.008.
    [9] DALAL A and PANDA B S. On total chromatic number of complete multipartite graphs[J]. Discrete Applied Mathematics, 2025, 377: 445–458. doi: 10.1016/j.dam.2025.08.027.
    [10] PUNITHA A and JAYARAMAN G. On total coloring of triple star and lobster graphs[J]. Communications on Applied Nonlinear Analysis, 2024, 31(8s): 494–504. doi: 10.52783/cana.v31.1543.
    [11] KAVASKAR T and SUKUMARAN S. Total coloring of some graph operations[C]. Proceedings of the 10th International Conference on Algorithms and Discrete Applied Mathematics, Bhilai, India, 2024: 302–312. doi: 10.1007/978-3-031-52213-0_21.
    [12] PUNITHA A and JAYARAMAN G. Total coloring of middle graph of certain snake graph families[J]. Journal of Applied Mathematics & Informatics, 2024, 42(2): 353–366. doi: 10.14317/jami.2024.353.
    [13] KAVASKAR T and SUKUMARAN S. Total coloring of the generalized corona product of graphs[J]. Studia Scientiarum Mathematicarum Hungarica, 2025, 62(1): 1. doi: 10.1556/012.2025.04326.
    [14] BORODIN O V. On the total coloring of planar graphs[J]. Journal für die reine und angewandte Mathematik, 1989, 1989(394): 180–185. doi: 10.1515/crll.1989.394.180.
    [15] KOWALIK Ł, SERENI J S, and ŠKREKOVSKI R. Total-coloring of plane graphs with maximum degree nine[J]. SIAM Journal on Discrete Mathematics, 2008, 22(4): 1462–1479. doi: 10.1137/070688389.
    [16] YAP H P. Total Colourings of Graphs[M]. Berlin, Heidelberg: Springer, 2006: 96–103. doi: 10.1007/BFb0092895.
    [17] XU Renyu and WU Jianliang. Total coloring of planar graphs with 7-cycles containing at most two chords[J]. Theoretical Computer Science, 2014, 520: 124–129. doi: 10.1016/j.tcs.2013.08.019.
    [18] SANDERS D P and ZHAO Yue. On total 9-coloring planar graphs of maximum degree seven[J]. Journal of Graph Theory, 1999, 31(1): 67–73. doi: 10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C.
    [19] CAI Hua. Total coloring of planar graphs without chordal 7-cycles[J]. Acta Mathematica Sinica, English Series, 2015, 31(12): 1951–1962. doi: 10.1007/s10114-015-4337-y.
    [20] WANG Yingqian, SHANGGUAN M L, and LI Qiao. On total chromatic number of planar graphs without 4-cycles[J]. Science in China Series A: Mathematics, 2007, 50(1): 81–86. doi: 10.1007/s11434-007-2031-x.
    [21] SHEN Lan and WANG Yingqian. On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles[J]. Graphs and Combinatorics, 2009, 25(3): 401–407. doi: 10.1007/s00373-009-0843-y.
    [22] SUN Xiangyong, WU Jianliang, WU Yuwen, et al. Total colorings of planar graphs without adjacent triangles[J]. Discrete Mathematics, 2009, 309(1): 202–206. doi: 10.1016/j.disc.2007.12.071.
    [23] ZHU Enqiang and XU Jin. A sufficient condition for planar graphs with maximum degree 6 to be totally 8-colorable[J]. Discrete Applied Mathematics, 2017, 223: 148–153. doi: 10.1016/j.dam.2017.01.036.
    [24] CHANG Yulin, JING Fei, WANG Guanghui, et al. Total-coloring of sparse graphs with maximum degree 6[J]. Acta Mathematicae Applicatae Sinica, English Series, 2021, 37(4): 738–746. doi: 10.1007/s10255-021-1039-3.
    [25] ZHU Enqiang and RAO Yongsheng. A sufficient condition for planar graphs of maximum degree 6 to be totally 7-colorable[J]. Discrete Dynamics in Nature and Society, 2020, 2020(1): 3196540. doi: 10.1155/2020/3196540.
    [26] GEETHA J, NARAYANAN N, and SOMASUNDARAM K. Total colorings-a survey[J]. AKCE International Journal of Graphs and Combinatorics, 2023, 20(3): 339–351. doi: 10.1080/09728600.2023.2187960.
  • 加载中
图(9)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  24
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 修回日期:  2026-01-12
  • 录用日期:  2026-01-12
  • 网络出版日期:  2026-01-24

目录

    /

    返回文章
    返回