高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向物联网应用的超低功耗 IM3 反向散射无源传感系统

黄瑞杨 武鹏德

黄瑞杨, 武鹏德. 面向物联网应用的超低功耗 IM3 反向散射无源传感系统[J]. 电子与信息学报. doi: 10.11999/JEIT250787
引用本文: 黄瑞杨, 武鹏德. 面向物联网应用的超低功耗 IM3 反向散射无源传感系统[J]. 电子与信息学报. doi: 10.11999/JEIT250787
HUANG Ruiyang, WU Pengde. Ultra-Low-Power IM3 Backscatter Passive Sensing System for IoT Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250787
Citation: HUANG Ruiyang, WU Pengde. Ultra-Low-Power IM3 Backscatter Passive Sensing System for IoT Applications[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250787

面向物联网应用的超低功耗 IM3 反向散射无源传感系统

doi: 10.11999/JEIT250787 cstr: 32379.14.JEIT250787
详细信息
    作者简介:

    黄瑞杨:男,硕士生,研究方向为射频无线能量与数据协同传输

    武鹏德:男,副教授,硕士生导师,研究方向为天线设计、无线能量与数据协同传输、面向植入设备的超低功耗通信,可穿戴和植入式无线传感技术等

  • 中图分类号: TN836

Ultra-Low-Power IM3 Backscatter Passive Sensing System for IoT Applications

  • 摘要: 传统反向散射通信无法同步实现射频能量收集与传感信息读出,而有源标签的传感信息回传存在较高通信能耗。该文提出一种新颖的三阶互调(IM3)反向散射式无源传感系统,可在不影响射频能量收集效率的前提下实现传感信息低功耗读出。该文研究了整流电路中反向散射IM3产生机制,通过差频嵌入阻抗调控IM3信号转换效率,传感信息控制嵌入阻抗谐振频率变化,将传感信息映射到IM3信号强度凹陷点变化上,查询器通过扫描该凹陷点反演传感信息。实验结果表明,该系统能准确读取传感信息,能量转换效率仅比纯整流模式下降约5个百分点;在1米无线传输距离下,反向散射IM3信号反演的传感电压与直接测量值误差小于5%,为解决同步能量收集与模拟量读出、低功耗信息传输问题提供了新方法。
  • 图  1  RF WPT系统概况

    图  2  本文提出的基于IM3信号无源传感系统传感端模型

    图  3  系统传感端中IM3信号分量的产生过程

    图  4  辅助过程中第二次频率转换的交流等效模型

    图  5  本文提出的基于IM3信号无源传感系统的传感端电路原理图

    图  6  嵌入阻抗在差频$ {\omega }_{\Delta } $处的等效模型

    图  7  嵌入阻抗$ {Z}_{{{\omega }_{\Delta }}}\left(V\right) $随差分频率$ {\omega }_{\Delta } $的变化情况

    图  8  电路测试实验环境

    图  9  本文设计的基于IM3信号无源传感系统传感端在不同偏置电压下的反向散射的IM3信号强度变化情况

    图  10  不同输入功率与偏置电压情况下传感信息读出对RF-DC效率的影响

    图  11  空间测试实验环境

    图  12  空间测试实验结果

    表  1  $ {Z}_{{{\omega }_{\Delta }}}\left(V\right) $与反向散射的IM3信号强度关系的仿真结果(两输入信号功率均为0 dBm)

    光标 二极管上的基波电压 (V) 嵌入阻抗$ {Z}_{{{\omega }_{\Delta }}}\left(V\right) $ (Ω) $ {V}_{\text{j,}{{\omega }_{\Delta }}} $ (V) $ {I}_{\text{IM3,MC}}+{I}_{\text{IM3,AC}} $ (10–5A)
    M1 $ \begin{matrix}{\omega }_{1}=1.11\angle -0.78{^{\circ}}\\ {\omega }_{2}=1.11\angle 0.12{^{\circ}}\\ \end{matrix} $ $ 4.87+j49.13 $ $ 0.03\angle -78.33{^{\circ}} $ $ 4.52\angle -135.45{^{\circ}} $
    M2(谐振点) $ 500 $ $ 0.40\angle -0.97{^{\circ}} $ $ 0.21\angle -116.17{^{\circ}} $
    M3 $ 70.91-j174.43 $ $ 0.09\angle -18.44{^{\circ}} $ $ 3.98\angle -132.66{^{\circ}} $
    下载: 导出CSV
  • [1] JOUHARI M, SAEED N, ALOUINI M S, et al. A survey on scalable LoRaWAN for massive IoT: Recent advances, potentials, and challenges[J]. IEEE Communications Surveys & Tutorials, 2023, 25(3): 1841–1876. doi: 10.1109/COMST.2023.3274934.
    [2] SINHA S. State of IoT 2023: Number of connected IoT devices growing 16% to 16.7 billion globally[EB/OL]. https://iot-analytics.com/number-connected-iot-devices-2023/, 2023.
    [3] HOPE D. Why your Internet habits are not as clean as you think[EB/OL]. https://blueandgreentomorrow.com/features/why-internet-habits-are-not-as-clean-as-you-think/, 2021.
    [4] GLICKMAN C. Green IoT: The shift to practical sustainability[EB/OL]. https://cio.economictimes.indiatimes.com/news/internet-of-things/green-iot-the-shift-to-practical-sustainability/101654205, 2023.
    [5] MA Dong, LAN Guohao, HASSAN M, et al. Sensing, computing, and communications for energy harvesting IoTs: A survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1222–1250. doi: 10.1109/COMST.2019.2962526.
    [6] PECUNIA V, OCCHIPINTI L G, and HOYE R L Z. Emerging indoor photovoltaic technologies for sustainable Internet of Things[J]. Advanced Energy Materials, 2021, 11(29): 2100698. doi: 10.1002/aenm.202100698.
    [7] GU Bowen, LI Dong, DING Haiyang, et al. Breaking the interference and fading gridlock in backscatter communications: State-of-the-art, design challenges, and future directions[J]. IEEE Communications Surveys & Tutorials, 2025, 27(2): 870–911. doi: 10.1109/COMST.2024.3436082.
    [8] XU Chenren, YANG Lei, and ZHANG Pengyu. Practical backscatter communication systems for battery-free Internet of Things: A tutorial and survey of recent research[J]. IEEE Signal Processing Magazine, 2018, 35(5): 16–27. doi: 10.1109/MSP.2018.2848361.
    [9] BLETSAS A, ALEVIZOS P N, and VOUGIOUKAS G. The art of signal processing in backscatter radio for μW (or less) Internet of Things: Intelligent signal processing and backscatter radio enabling batteryless connectivity[J]. IEEE Signal Processing Magazine, 2018, 35(5): 28–40. doi: 10.1109/MSP.2018.2837678.
    [10] SUN Xueman, LIU Changjun, CHEN Yidan, et al. Low-power wireless uplink utilizing harmonic with an integrated rectifier–transmitter[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(2): 200–203. doi: 10.1109/LMWC.2020.3043793.
    [11] HÜSSEN L, WEI M D, and NEGRA R. Power efficient simultaneous wireless information transception and power reception through an isolation barrier[C]. 2024 IEEE Wireless Power Technology Conference and Expo (WPTCE), Kyoto, Japan, 2024: 872–875. doi: 10.1109/WPTCE59894.2024.10557398.
    [12] CHE Dan, LIU Changjun, HE Haoming, et al. Second- and third-harmonic backscatter through a bandstop filter using defected ground structure[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70(11): 4171–4175. doi: 10.1109/TCSII.2023.3279100.
    [13] LEE N, LEE D, and OH J. Wideband harmonic backscattering rectifier for energy-efficient localization in wireless power transfer systems[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(11): 1568–1571. doi: 10.1109/LMWT.2023.3317429.
    [14] TANG Xiaoqing, LIU Xin, XIE Guihui, et al. Prototype implementation and experimental evaluation for LoRa-backscatter communication systems with RF energy harvesting and low power management[J]. IEEE Transactions on Communications, 2025, 73(7): 4811–4825. doi: 10.1109/TCOMM.2024.3522052.
    [15] TANG Xiaoqing, ZHANG Yunxin, SHAO Xiaodie, et al. Battery-free ultrahigh-frequency wireless temperature sensing tag for IoT applications[J]. IEEE Internet of Things Journal, 2025, 12(18): 37119–37131. doi: 10.1109/JIOT.2025.3586686.
    [16] KUO N C, ZHAO Bo, and NIKNEJAD A M. Novel inductive wireless power transfer uplink utilizing rectifier third-order nonlinearity[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(1): 319–331. doi: 10.1109/TMTT.2017.2700274.
    [17] QARAGOEZ Y, POLLIN S, and SCHREURS D. Enhanced two-way communication for battery-free wireless sensors: SWIPT with IM3 backscattering[C]. 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, Denver, USA, 2022: 48–51. doi: 10.1109/IMS37962.2022.9865269.
    [18] YANG Changgui, ZHANG Yunshan, CHANG Ziyi, et al. Neural dielet: A 0.4 mm3 battery-less crystal-less neural-recording system on die achieving 1.6 cm backscatter range with 2 mm ×2 mm on-chip antenna[J]. IEEE Transactions on Biomedical Circuits and Systems, 2023, 17(1): 54–66. doi: 10.1109/TBCAS.2022.3232783.
    [19] POZAR D M. Microwave Engineering[M]. 4th ed. Hoboken John Wiley & Sons, 2012: 537–538. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
    [20] RFM95PW. HOPERF Reliable original manufacturer of IoT key components[EB/OL]. https://www.hoperf.com/modules/lora/RFM95PW.html. (查阅网上资料,未找到本条文献题目和年份信息,请确认).
    [21] RFM95W. HOPERF Reliable original manufacturer of IoT key components[EB/OL]. https://www.hoperf.com/modules/lora/RFM95PW.html. (查阅网上资料,未找到本条文献题目和年份信息,请确认).
    [22] Texas Instruments. BQ25504 ultra low-power boost converter with battery management for energy harvester applications[EB/OL]. https://www.ti.com/lit/ds/symlink/bq25504.pdf, 2023.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-01
  • 录用日期:  2025-12-01
  • 网络出版日期:  2025-12-09

目录

    /

    返回文章
    返回