高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于带限信号压缩的高效软件无线电卫星双向时间比对

程龙 董绍武 武文俊 弓剑军 王威雄 高喆

程龙, 董绍武, 武文俊, 弓剑军, 王威雄, 高喆. 基于带限信号压缩的高效软件无线电卫星双向时间比对[J]. 电子与信息学报. doi: 10.11999/JEIT250705
引用本文: 程龙, 董绍武, 武文俊, 弓剑军, 王威雄, 高喆. 基于带限信号压缩的高效软件无线电卫星双向时间比对[J]. 电子与信息学报. doi: 10.11999/JEIT250705
CHENG Long, DONG Shaowu, WU Wenjun, GONG Jianjun, WANG Weixiong, GAO Zhe. Band-Limited Signal Compression Enabled Computationally Efficient Software-Defined Radio for Two-Way Satellite Time and Frequency Transfer[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250705
Citation: CHENG Long, DONG Shaowu, WU Wenjun, GONG Jianjun, WANG Weixiong, GAO Zhe. Band-Limited Signal Compression Enabled Computationally Efficient Software-Defined Radio for Two-Way Satellite Time and Frequency Transfer[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250705

基于带限信号压缩的高效软件无线电卫星双向时间比对

doi: 10.11999/JEIT250705 cstr: 32379.14.JEIT250705
详细信息
    作者简介:

    程龙:男,博士生,研究方向为高精度时间频率传递

    董绍武:男,研究员,研究方向为守时技术、卫星导航系统时间

    武文俊:男,研究员,研究方向为时间与频率、卫星导航

    弓剑军:男,工程师,研究方向为守时技术

    王威雄:男,助理研究员,研究方向为守时技术、高精度时间频率传递

    高喆:女,助理研究员,研究方向为高精度时间频率传递

    通讯作者:

    董绍武 sdong@ntsc.ac.cn

  • 中图分类号: TN927

Band-Limited Signal Compression Enabled Computationally Efficient Software-Defined Radio for Two-Way Satellite Time and Frequency Transfer

  • 摘要: 卫星双向时间比对(TWSTFT)技术因其高精度特性在时间同步领域具有重要应用价值,其中实时性是衡量系统性能的关键指标。传统硬件实现的TWSTFT存在显著的周日效应问题,而基于开环架构和高分辨率多相关器的软件定义无线电(SDR)实现方法虽能有效抑制该效应,却因计算复杂度高而面临实时性挑战。为提升SDR接收机的运算效率并改善其短期稳定性,本研究在传统信号压缩法基础上提出了一种基于带限信号压缩的高效SDR实现方法。该方法创新性地采用伪随机噪声(PRN)码整数倍抽取序列与接收信号进行相关运算以获得压缩值,并通过建立抽取序列采样频率与信号带宽的定量关系实现相关结果的高效重构。该机制通过消除传统算法的冗余计算环节,在保证测量精度的同时显著提升了运算效率并降低了系统资源开销。为验证方法有效性,该文设计了不同带宽和基线长度的对比实验,结果表明:相较于TWSTFT SDR中常用的多相关器法,本方法的运算速度提升7-8倍,资源消耗量降低了85~90%,且信号预处理阶段的滤波操作能有效抑制带外噪声干扰。这种效率提升不仅增加了单位拟合周期内的有效测量数据量,通过统计平均效应降低了随机噪声影响,还显著提高了比对结果的短期稳定性,为高精度时间比对提供了新的技术途径。
  • 图  1  TWSTFT SDR比对原理。其中红色箭头为站点1的上行链路,蓝色箭头为站点2的上行链路。

    图  2  信号压缩中的本地PRN码副本

    图  3  传统信号压缩法相关结果计算原理

    图  4  接收信号与本地PRN码副本频谱

    图  5  不同滤波带宽时本地PRN码副本的码片形状

    图  6  各起始相位εi,k与接收信号的互相关压缩结果。(a) 滤波前的接收信号;(b) 滤波后的接收信号。

    图  7  εi,k等效采样率等于信号带宽时(n=2)相关值的计算过程。 (上)混叠导致的失真压缩信号,其中上半部分为i=0,1,2,···,Nchip/2-1时的压缩信号,下半部分为i=Nchip/2,Nchip/2+1,···,Nchip-1时的压缩信号;(下)互补信号累加后的重构中间结果。

    图  8  实验平台接收设备

    图  9  本地回路中传统信号压缩法、多相关器法以及带限信号压缩法的时间偏差

    图  10  NTSC-NIM链路卫星双向比对结果及时间偏差

    图  11  NTSC-SU和NTSC-PTB链路的时间偏差

    表  1  实验参数配置表

    接收机通道有效信号带宽比对方法压缩信号组数n动态范围(码片)本地PRN码副本
    滤波带宽
    接收信号
    是否滤波
    接收信号滤波带宽/
    中心频率
    R01.25 MHz多相关器法-±0.71.25 MHz-
    R01.25 MHz传统信号压缩法-±1.0--
    R01.25 MHz带限信号压缩法20, 2, 1±1.01.25 MHz1.25 MHz / 70 MHz
    R12.5 MHz多相关器法-±0.72.5 MHz-
    R12.5 MHz传统信号压缩法-±1.0--
    R12.5 MHz带限信号压缩法20, 2±1.02.5 MHz2.5 MHz / 70.02 MHz
    下载: 导出CSV

    表  2  本地回路中到达时间以及信噪比的统计

    方法到达时间信噪比
    均值(ns)标准差(ps)均值(dB)标准差(dB)
    传统信号压缩1453.37162.569.7020.0186
    多相关器1441.4522.5714.3080.0229
    带限信号压缩(n=20)1441.4421.9814.2740.0309
    带限信号压缩(n=2)1441.4522.0314.2760.0313
    下载: 导出CSV

    表  3  NTSC-NIM、NTSC-SU和NTSC-PTB链路中传统信号压缩法、多相关器法和带限信号压缩法单向结果统计(ps)

    方法NTSC-NIMNTSC-SUNTSC-PTB
    传统信号压缩14.5710.668.40
    多相关器13.5610.417.98
    带限信号压缩(n=20)12.849.897.36
    带限信号压缩(n=2)12.849.917.33
    带限信号压缩(n=1)12.829.907.36
    下载: 导出CSV

    表  4  SATRE本地回路和TWSTFT链路中多相关器法和带限信号压缩法的时间以及资源消耗统计情况

    方法SATRE本地回路
    (ms)
    NTSC-NIM
    (ms)
    NTSC-SU
    (ms)
    NTSC-PTB
    (ms)
    平均时耗
    (ms)
    加速比资源占用
    (MiB)
    多相关器81.9980.5481.9085.3282.431430
    带限信号压缩(n=20)32.9428.2132.8227.4730.362.72410
    带限信号压缩(n=2)8.218.658.0715.9510.228.0766
    带限信号压缩(n=1)-14.916.376.329.208.9544
    下载: 导出CSV

    表  5  多相关器法和带限信号压缩法所支持的最大比对通道数的统计结果

    方法时间限制
    比对通道数
    GPU内存限制
    比对通道数
    最大
    比对通道数
    信号未经
    滤波操作
    多相关器11.816.311
    带限信号压缩(n=20)31.917.117
    信号经过
    滤波操作
    带限信号压缩(n=20)30.915.315
    带限信号压缩(n=2)91.995.391
    带限信号压缩(n=1)102.2143.0102
    下载: 导出CSV
  • [1] WANG Weixiong, DONG Shaowu, WU Wenjun, et al. Evaluation of Asia-Europe TWSTFT Links using the express-80 satellite[J]. IEEE Instrumentation & Measurement Magazine, 2022, 25(6): 19–24. doi: 10.1109/MIM.2022.9847188.
    [2] JIANG Zhiheng, KONATÉ H, and LEWANDOWSKI W. Review and preview of two-way time transfer for UTC generation - from TWSTFT to TWOTFT[C]. Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC), Prague, Czech Republic, 2013: 501–504. doi: 10.1109/EFTF-IFC.2013.6702103. (查阅网上资料,未找到标黄作者全称信息,请确认).
    [3] 王威雄, 董绍武, 武文俊, 等. 基于软件接收机和间接链路的卫星双向时间比对性能分析[J]. 仪器仪表学报, 2019, 40(10): 152–160. doi: 10.19650/j.cnki.cjsi.J1905616.

    WANG Weixiong, DONG Shaowu, WU Wenjun, et al. Performance analysis of two-way satellite time and frequency transfer based on SDR receivers and indirect links[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 152–160. doi: 10.19650/j.cnki.cjsi.J1905616.
    [4] WANG Xiang, DONG Shaowu, SONG Huijie, et al. Time Transfer Link fusion algorithm based on wavelet multi-resolution analysis[J]. Measurement, 2024, 232: 114599. doi: 10.1016/j.measurement.2024.114599.
    [5] 刘强, 孙浩冉, 胡邓华, 等. 基于Vondrak-Cepek组合滤波和注意力机制加权的时间比对融合算法[J]. 系统工程与电子技术, 2025, 47(2): 673–679. doi: 10.12305/j.issn.1001-506X.2025.02.34.

    LIU Qiang, SUN Haoran, HU Denghua, et al. Time alignment fusion algorithm based on Vondrak-Cepek combined filtering and attention mechanism weighting[J]. Systems Engineering and Electronics, 2025, 47(2): 673–679. doi: 10.12305/j.issn.1001-506X.2025.02.34.
    [6] PANFILO G and ARIAS F. The coordinated universal time (UTC)[J]. Metrologia, 2019, 56(4): 042001. doi: 10.1088/1681-7575/ab1e68.
    [7] BIPM. Two-way satellite time and frequency transfer: First use of a software defined radio receiver in UTC calculation[EB/OL]. https://www.bipm.org/en/-/2020-twstft-sdr, 2025.
    [8] SICCARDI M, THAI T T, ROVERA D G, et al. A TWSTFT transmitter prototype compatible with SDR receivers and SATRE modems[C]. Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, USA, 2020: 1–3. doi: 10.1109/IFCS-ISAF41089.2020.9234873.
    [9] FRIEDT J M, LOURS M, GOAVEC-MEROU G, et al. Development of an opensource, Openhardware, software-defined radio platform for two-way satellite time and frequency transfer[C]. 2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), Toyama, Japan, 2023: 1–4. doi: 10.1109/EFTF/IFCS57587.2023.10272067.
    [10] ACHKAR J, MEYER É, CHUPIN B, et al. Two-way satellite time and frequency transfer using an opensource, Openhardware software-defined radio platform[C]. 4th URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 2024: 1–4. doi: 10.46620/URSIATRASC24/ZXOX6507.
    [11] LEE J, OH J I, CHOI G W, et al. Truncated M-sequence and BOC modulation based ranging signal design for TWSTFT[C]. Conference on Precision Electromagnetic Measurements (CPEM), Denver, USA, 2024: 1–2. doi: 10.1109/CPEM61406.2024.10646003.
    [12] WEILL L R. Theory and applications of signal compression in GNSS receivers[C]. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation, Fort Worth, USA, 2007: 708–719.
    [13] WANG Xiang, GAO Yang, CUI Xiaowei, et al. A signal quality monitoring algorithm based on chip domain observables for BDS B1C signal[C]. International Technical Meeting of the Institute of Navigation, San Diego, USA, 2021: 149–161. doi: 10.33012/2021.17810. (查阅网上资料,未找到本条文献出版地信息,请确认).
    [14] WANG Xiang, CUI Xiaowei, LIU Gang, et al. Signal quality monitoring based on chip domain observables: Theory, design, and implementation[J]. NAVIGATION: Journal of the Institute of Navigation, 2022, 69(4): navi. 543. doi: 10.33012/navi.543.
    [15] WANG Chuanrui, WANG Xiang, CUI Xiaowei, et al. Efficient chip-shape correlator implementation on a GPU-based real-time GNSS SDR receiver[J]. GPS Solutions, 2022, 26(4): 143. doi: 10.1007/s10291-022-01332-1.
    [16] JIANG Zhiheng, ZHANG V, HUANG Y J, et al. Use of software-defined radio receivers in two-way satellite time and frequency transfers for UTC computation[J]. Metrologia, 2018, 55(5): 685–698. doi: 10.1088/1681-7575/aacbe6.
    [17] 王威雄, 董绍武, 武文俊, 等. 卫星双向时间传递链路校准及其不确定度分析[J]. 仪器仪表学报, 2018, 39(12): 64–72. doi: 10.19650/j.cnki.cjsi.J1803688.

    WANG Weixiong, DONG Shaowu, WU Wenjun, et al. Link calibration of two-way satellite time and frequency transfer and its uncertainty analysis[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 64–72. doi: 10.19650/j.cnki.cjsi.J1803688.
    [18] HUANG Y J, FUJIEDA M, TAKIGUCHI H, et al. Stability improvement of an operational two-way satellite time and frequency transfer system[J]. Metrologia, 2016, 53(2): 881–890. doi: 10.1088/0026-1394/53/2/881.
    [19] QI Yunhan, YAO Zheng, and LU Mingquan. General design methodology of code multi-correlator discriminator for GNSS multi-path mitigation[J]. IET Radar, Sonar & Navigation, 2021, 15(9): 969–984. doi: 10.1049/rsn2.12088.
    [20] SIEBERT C, KONOVALTSEV A, and MEURER M. Development and validation of a multipath mitigation technique using multi-correlator structures[J]. NAVIGATION: Journal of the Institute of Navigation, 2023, 70(4): navi. 609. doi: 10.33012/navi.609.
    [21] GAO Zhe, WANG Weixiong, WU Wenjun, et al. Experiment of Asia-Europe TWSTFT Link using new satellite express-80[C]. 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium, Taipei, China, 2024: 1–4. doi: 10.1109/UFFC-JS60046.2024.10793506.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  6
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-06
  • 录用日期:  2025-12-06
  • 网络出版日期:  2025-12-15

目录

    /

    返回文章
    返回