高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合跨域多特征的SAR射频干扰检测与定位方法

付泽文 韦婷婷 李宁宁 李宁

付泽文, 韦婷婷, 李宁宁, 李宁. 融合跨域多特征的SAR射频干扰检测与定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT250701
引用本文: 付泽文, 韦婷婷, 李宁宁, 李宁. 融合跨域多特征的SAR射频干扰检测与定位方法[J]. 电子与信息学报. doi: 10.11999/JEIT250701
FU Zewen, WEI Tingting, LI Ningning, LI Ning. Detection and Localization of Radio Frequency Interference via Cross-domain Multi-feature from SAR Raw Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250701
Citation: FU Zewen, WEI Tingting, LI Ningning, LI Ning. Detection and Localization of Radio Frequency Interference via Cross-domain Multi-feature from SAR Raw Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250701

融合跨域多特征的SAR射频干扰检测与定位方法

doi: 10.11999/JEIT250701 cstr: 32379.14.JEIT250701
基金项目: 河南省自然科学基金(242300421170)
详细信息
    作者简介:

    付泽文:男,博士生,研究方向为SAR信号处理

    韦婷婷:女,硕士生,研究方向为SAR干扰检测

    李宁宁:女,硕士生,研究方向为SAR信号处理

    李宁:男,教授,研究方向为合成孔径雷达成像与对抗

    通讯作者:

    李宁 hedalining@henu.edu.cn

  • 中图分类号: TN957

Detection and Localization of Radio Frequency Interference via Cross-domain Multi-feature from SAR Raw Data

Funds: The Natural Science Foundation of Henan (242300421170)
  • 摘要: 合成孔径雷达(SAR)易受同频段电子设备产生的射频干扰影响,使SAR图像解译难度显著增加。射频干扰的检测与定位有利于将SAR回波数据中的干扰精准“剔除”,降低射频干扰对SAR图像解译的不利影响。针对射频干扰业务化、工程化的检测与定位,该文提出一种融合跨域多特征的SAR射频干扰检测与定位方法。首先,通过对时域矩峰度和时域一阶偏导数进行加权融合,实现回波信号的初步检测。然后,结合短时傅里叶变换与对数比差异变化能量检测技术,获取射频干扰在SAR回波数据时频域中的时空表征,最后,将射频干扰的时空表征映射至时域,得到射频干扰信号的精确位置。通过全方位多角度的仿真与实测数据实验,结果表明所提方法针对窄带干扰和宽带干扰的检测与定位精度均优于传统方法,为SAR系统工程化检测与定位射频干扰提供了可靠的技术方案。
  • 图  1  融合跨域多特征的SAR射频干扰检测与定位方法流程图

    图  2  实测数据加仿真干扰数据的不同方法的检测结果

    图  3  基于仿真数据的定位结果对比

    图  4  基于不同检测方法的干扰抑制结果对比

    图  5  含NBI实测数据的检测结果对比

    图  6  含NBI实测数据的定位结果对比

    图  7  含NBI实测数据基于不同检测方法的干扰抑制结果对比

    图  8  含WBI数据的检测结果对比

    图  9  含WBI实测数据基于不同检测方法的干扰抑制结果对比

    图  10  含WBI数据的定位结果对比

    表  1  干扰信号参数设置

    参数名称参数值
    载波频率5.300 GHz
    采样频率32.317 MHz
    平台有效速度7000 m/s
    景中心斜距988647 m
    脉冲重复频率1256.98 Hz
    发射信号时宽41.74 μs
    发射信号带宽30 MHz
    干扰载频5.305 GHz
    干扰带宽6.0 MHz
    下载: 导出CSV

    表  2  仿真数据不同检测结果定量分析(%)

    复合算子方法TFA所提方法
    SINR=-5 dBSA95.4397.3498.56
    FA1.541.960.65
    SINR=0 dBSA94.8996.8998.03
    FA1.872.140.93
    SINR=5 dBSA94.0795.9797.48
    FA1.992.531.29
    下载: 导出CSV

    表  3  仿真数据抑制结果定量分析

    方法特征子空间方法复合算子+EVD所提方法
    RMSE0.213 40.210 60.190 2
    下载: 导出CSV

    表  4  窄带PRFI实测数据干扰抑制结果定量分析

    方法特征子空间复合算子所提方法
    实测数据灰度熵0.583 70.558 90.530 2
    对比度1.193 51.204 31.210 8
    平均梯度214.18215.37216.94
    运行时间(s)80.1296.23150.36
    下载: 导出CSV

    表  5  含宽带RFI实测数据干扰抑制结果定量分析

    方法特征子空间复合算子所提方法
    实测数据灰度熵0.863 70.796 00.784 3
    对比度1.430 21.41151.439 2
    平均梯度198.16196.35199.94
    运行时间(s)90.11105.26180.76
    下载: 导出CSV
  • [1] ZHOU Feng and TAO Mingliang. Research on methods for narrow-band interference suppression in synthetic aperture radar data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3476–3485. doi: 10.1109/JSTARS.2015.2431916.
    [2] LI Ning and HU Xingwang. Ultrawideband mutual RFI mitigation between SAR satellites: From the perspective of European sentinel-1A[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5229020. doi: 10.1109/TGRS.2024.3501309.
    [3] ZHANG Zhizheng, SHU Gaofeng, HUANG Yabo, et al. Screening and artifact detection of RFI in sentinel-1A time-series images combining change detection techniques with structural similarity index[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 10864–10881. doi: 10.1109/JSTARS.2025.3559171.
    [4] ZHOU Yashi, WANG Pei, CHEN Zhen, et al. Very high resolution SAR imaging with DGPS-supported airborne X-band data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3605–3617. doi: 10.1109/JSTARS.2020.3004013.
    [5] LI Ning, ZHANG Hengrui, LV Zongsen, et al. Simultaneous screening and detection of RFI from massive SAR images: A case study on european sentinel-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231917. doi: 10.1109/TGRS.2022.3191815.
    [6] LYU Qiyuan, HAN Bing, LI Guangzou, et al. SAR interference suppression algorithm based on low-rank and sparse matrix decomposition in time–frequency domain[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4008305. doi: 10.1109/LGRS.2020.3048161.
    [7] 舒高峰, 刘明月, 李宁. 采用改进特征子空间投影的SAR脉冲式直达波干扰抑制方法[J]. 电子与信息学报, 2024, 46(4): 1382–1390. doi: 10.11999/JEIT230665.

    SHU Gaofeng, LIU Mingyue, and LI Ning. SAR pulsed direct wave interference suppression method using improved Eigen-subspace projection[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1382–1390. doi: 10.11999/JEIT230665.
    [8] 庄学彬, 牛犇, 林子健, 等. 基于门控机制的并行CNN-Transformer神经网络的多参数欺骗干扰检测方法[J]. 电子与信息学报, 2025, 47(6): 2005–2014. doi: 10.11999/JEIT240977.

    ZHUANG Xuebin, NIU Ben, LIN Zijian, et al. A multiparameter spoofing detection method based on parallel CNN-transformer neural network with gating mechanism[J]. Journal of Electronics & Information Technology, 2025, 47(6): 2005–2014. doi: 10.11999/JEIT240977.
    [9] BUCKREUSS S and HORN R. E-SAR P-band SAR subsystem design and RF-interference suppression[C]. Proceedings of the Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings, Seattle, USA, 1998: 466–468. doi: 10.1109/IGARSS.1998.702941.
    [10] ZHOU Feng, WU Renbiao, XING Mengdao, et al. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 75–79. doi: 10.1109/LGRS.2006.887033.
    [11] FENG Jin, ZHENG Huifang, DENG Yunkai, et al. Application of subband spectral cancellation for SAR narrow-band interference suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 190–193. doi: 10.1109/LGRS.2011.2163150.
    [12] LI Ning, LV Zongsen, GUO Zhengwei, et al. Time-domain notch filtering method for pulse RFI mitigation in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013805. doi: 10.1109/LGRS.2021.3077247.
    [13] 郑慧芳, 杨淋, 冯锦. SAR窄带干扰抑制的子带子空间滤波技术研究[J]. 电子与信息学报, 2013, 35(12): 2836–2842. doi: 10.3724/SP.J.1146.2013.00201.

    ZHENG Huifang, YANG Lin, and FENG Jin. Research on the subband subspace filtering for narrow band interference suppression in SAR[J]. Journal of Electronics & Information Technology, 2013, 35(12): 2836–2842. doi: 10.3724/SP.J.1146.2013.00201.
    [14] LI Ning, LV Zongsen, and GUO Zhengwei. Pulse RFI mitigation in synthetic aperture radar data via a three-step approach: Location, notch, and recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225617. doi: 10.1109/TGRS.2022.3161368.
    [15] ZHANG Hengrui and LI Ning. Composite indicator for detecting and localizing time-varying RFI in SAR raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5101114. doi: 10.1109/TGRS.2023.3345151.
    [16] WEI Tingting, HU Xingwang, GUO Zhengwei, et al. A two-stage method for screening pulse RFI in SAR raw data alternating the use of time and frequency domains[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 4331–4346. doi: 10.1109/JSTARS.2025.3530989.
    [17] HASHIMOTO Y, HIROSE A, and NATSUAKI R. Degree-of-polarization-based radio frequency interference detection for synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5212015. doi: 10.1109/TGRS.2025.3570493.
    [18] DI VINCENZO A, NATALE A, BERARDINO P, et al. A new paradigm based on the Bayesian information criterion for the detection of radio frequency interferences in SAR data[C]. Proceedings of 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 7948–7951. doi: 10.1109/IGARSS53475.2024.10642440.
    [19] HASHIMOTO Y, NATSUAKI R, and HIROSE A. RFI detection using degree of polarization for polarimetric synthetic aperture radar[C]. Proceedings of 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 11482–11485. doi: 10.1109/IGARSS53475.2024.10640790.
    [20] LV Zongsen, ZHANG Zhimin, FAN Huaitao, et al. A two-stage approach for TSNB and ITWB RFI mitigation in P- and L-band SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1450–1470. doi: 10.1109/TAES.2023.3336641.
    [21] DAVIS M E. Frequency allocation challenges for ultra-wideband radars[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(7): 12–18. doi: 10.1109/MAES.2013.6559376.
    [22] LI Ning, LV Zongsen, GUO Zhengwei, et al. Time-domain notch filtering method for pulse RFI mitigation in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013805. doi: 10.1109/LGRS.2021.3077247. (查阅网上资料,本条文献与第12条文献重复,请确认).
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  7
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-28
  • 修回日期:  2025-09-30
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回