高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂约束下应急救援无人机路径的熵增强量子涟漪协同算法

王恩良 章祯 孙知信

王恩良, 章祯, 孙知信. 复杂约束下应急救援无人机路径的熵增强量子涟漪协同算法[J]. 电子与信息学报. doi: 10.11999/JEIT250694
引用本文: 王恩良, 章祯, 孙知信. 复杂约束下应急救援无人机路径的熵增强量子涟漪协同算法[J]. 电子与信息学报. doi: 10.11999/JEIT250694
WANG Enliang, ZHANG Zhen, SUN Zhixin. Entropy Quantum Collaborative Planning Method for Emergency Path of Unmanned Aerial Vehicles Driven by Survival Probability[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250694
Citation: WANG Enliang, ZHANG Zhen, SUN Zhixin. Entropy Quantum Collaborative Planning Method for Emergency Path of Unmanned Aerial Vehicles Driven by Survival Probability[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250694

复杂约束下应急救援无人机路径的熵增强量子涟漪协同算法

doi: 10.11999/JEIT250694 cstr: 32379.14.JEIT250694
基金项目: 国家自然科学基金(62272239),江苏省农业科技创新基金(CX(22)1007),贵州省科技支撑项目([2023]一般272)
详细信息
    作者简介:

    王恩良:男,博士生,研究方向为神经架构优化、搜索算法

    章祯:男,硕士生,研究方向为深度学习算法优化、种群算法

    孙知信:男,教授,博士生导师,研究方向为计算机技术、信息网络、深度学习

    通讯作者:

    孙知信 sunzx@niupt.edu.cn

  • 中图分类号: TP391.41

Entropy Quantum Collaborative Planning Method for Emergency Path of Unmanned Aerial Vehicles Driven by Survival Probability

Funds: The National Natural Science Foundation of China (61972208, 62272239), Jiangsu Agriculture Science and Technology Innovation Fund(JASTIF) (CX(22)1007), Guizhou Provincial Key Technology R&D Program ([2023]272)
  • 摘要: 针对自然灾害应急救援中无人机路径规划面临的复杂约束和时效性要求,该文提出一种熵增强量子涟漪协同优化算法(E2QRSA)。该文构建了以受困人员生存概率最大化为目标的数学模型,将生存概率随时间指数衰减的特征融入目标函数,并综合考虑禁飞区、警戒区、动态障碍物等多重约束;设计了基于信息熵的量子态初始化策略,通过评估搜索空间的不确定性分布引导初始种群生成;提出多涟漪协同干涉机制,利用干涉场的建设性叠加强化优质解特征传播;建立了熵驱动的参数自适应调控方法,根据搜索熵变化率动态调整涟漪传播参数。结果表明:与PSO, QRO, ATLA, IVCSA, SEWOA等5种算法相比,E2QRSA的平均生存概率较次优算法提升4.3%~5.4%,显著提升了复杂灾害环境下无人机路径规划的时效性、安全性与决策科学性。
  • 图  1  E2QRSA算法框架示意图

    图  2  搜索熵与涟漪参数的动态耦合关系

    图  3  熵变化率与解质量增量的相关性分析

    图  4  纠缠度演化及其对种群多样性的影响

    图  5  纠缠概率对算法性能的影响

    图  7  多算法三维路径规划对比第2组

    图  6  多算法三维路径规划对比第1组

    表  1  不同规模场景下各算法性能对比

    算法中等规模场景大规模场景
    生存概率计算时间(s)路径长度(km)生存概率计算时间(s)路径长度(km)
    E²QRSA0.84742.3163.80.762138.5394.4
    SEWOA0.81258.7162.50.723187.3391.2
    IVCSA0.80554.2164.10.716176.8395.7
    ATLA0.79361.4167.30.698195.6472.3
    QRO0.77852.8169.70.685171.4467.8
    PSO0.73135.6171.20.624112.3418.3
    下载: 导出CSV

    表  2  CEC2017测试函数优化结果(均值±标准差)

    函数E²QRSASEWOAIVCSAATLAQROPSO
    F13.67e-06±7.2e-072.13e-06±4.8e-075.48e-06±9.1e-071.27e-05±2.3e-068.94e-05±1.5e-054.32e-05±8.6e-06
    F21.24e-04±2.8e-053.56e-04±6.1e-052.87e-04±9.0e-055.13e-04±8.7e-057.82e-04±1.3e-046.95e-04±1.1e-04
    F368.4±12.357.3±9.852.7±8.474.6±13.789.2±15.896.5±17.2
    F423.86±4.5231.92±5.8438.75±6.9345.28±8.1652.64±9.4367.83±11.25
    F58.74±1.957.23±1.629.86±2.1412.47±2.7815.38±3.2118.92±3.87
    F60.318±0.0740.462±0.0910.524±0.1080.687±0.1420.819±0.1651.025±0.198
    F11287.4±32.6342.5±38.9386.7±44.2425.3±49.8478.6±55.4532.8±61.7
    F151326.7±87.41284.3±79.81412.5±93.61523.4±102.71687.2±113.51825.6±124.8
    F21423.8±18.7467.2±22.4492.6±25.8518.4±28.9564.7±32.3612.3±35.6
    F281823.5±67.81756.4±58.91698.7±52.31942.6±74.22087.3±81.52234.8±89.7
    下载: 导出CSV

    表  3  核心组件消融实验结果(大规模场景)

    算法变体生存概率(最优)相对下降(%)收敛代数计算时间(s)
    E²QRSA完整版0.762-287138.5
    V1(无熵机制)0.6988.40368156.3
    V2(无协同干涉)0.6869.97395147.8
    V3(无量子纠缠)0.7146.30334142.6
    V4(距离目标)0.63516.67236125.7
    下载: 导出CSV

    表  4  涟漪初始振幅$ {\mathrm{A}}_{0} $对算法性能的影响(大规模场景下)

    $ {\mathrm{A}}_{0} $生存概率收敛代数能量消耗(%)
    0.50.69841278.3
    0.80.73633481.7
    1.00.76228785.2
    1.20.74531888.6
    1.50.72136592.4
    2.00.68242396.8
    下载: 导出CSV

    表  5  算法能量消耗与约束满足对比分析

    算法 总能耗
    (%)
    剩余电量
    (%)
    安全余量 最大段
    耗能(%)
    能耗
    标准差
    E²QRSA 85.2 14.8 3.8 2.1
    SEWOA 88.6 11.4 4.4 2.6
    IVCSA 89.3 10.7 3.6 3.1
    ATLA 96.8 3.2 5.2 4.3
    QRO 97.4 2.6 5.8 4.8
    PSO 87.4 12.6 4.2 4.6
    下载: 导出CSV
  • [1] YUCESOY E, BALCIK B, and COBAN E. The role of drones in disaster response: A literature review of operations research applications[J]. International Transactions in Operational Research, 2025, 32(2): 545–589. doi: 10.1111/itor.13484.
    [2] KHAN A, GUPTA S, and GUPTA S K. Emerging UAV technology for disaster detection, mitigation, response, and preparedness[J]. Journal of Field Robotics, 2022, 39(6): 905–955. doi: 10.1002/rob.22075.
    [3] 刘勇, 陈卓, 马良. 地震应急救援中卡车-无人机多目标协同调度问题及优化算法[J/OL]. 计算机应用研究. https://doi.org/10.19734/j.issn.1001-3695.2025.03.0111, 2025.

    LIU Yong, CHEN Zhuo, and MA Liang. Multi-objective cooperative scheduling optimization for truck-drone systems in earthquake emergency rescue operations[J/OL]. Application Research of Computers. https://doi.org/10.19734/j.issn.1001-3695.2025.03.0111, 2025.
    [4] DIAO Qifeng, ZHANG Jinfeng, LIU Min, et al. A disaster relief UAV path planning based on APF-IRRT* fusion algorithm[J]. Drones, 2023, 7(5): 323. doi: 10.3390/drones7050323.
    [5] HAYAT S, YANMAZ E, BETTSTETTER C, et al. Multi-objective drone path planning for search and rescue with quality-of-service requirements[J]. Autonomous Robots, 2020, 44(7): 1183–1198. doi: 10.1007/s10514-020-09926-9.
    [6] LI Jing, XIONG Yonghua, SHE Jinhua, et al. Optimal path planning for unmanned aerial vehicles with multiple round-trip flights in coverage tasks[J]. Robotics and Autonomous Systems, 2025, 189: 104970. doi: 10.1016/j.robot.2025.104970.
    [7] 田宇, 唐阳山, 李冬月, 等. 基于改进灰狼优化算法的多无人机应急救援任务分配[J]. 现代电子技术, 2025, 48(11): 163–168. doi: 10.16652/j.issn.1004-373x.2025.11.025.

    TIAN Yu, TANG Yangshan, LI Dongyue, et al. Multi-UAV emergency rescue task planning based on improved grey wolf optimization algorithm[J]. Modern Electronics Technique, 2025, 48(11): 163–168. doi: 10.16652/j.issn.1004-373x.2025.11.025.
    [8] ABDOLLAHZADEH B, KHODADADI N, BARSHANDEH S, et al. Puma optimizer (PO): A novel metaheuristic optimization algorithm and its application in machine learning[J]. Cluster Computing, 2024, 27(4): 5235–5283. doi: 10.1007/s10586-023-04221-5.
    [9] GHAREHCHOPOGH F S. Quantum-inspired metaheuristic algorithms: Comprehensive survey and classification[J]. Artificial Intelligence Review, 2023, 56(6): 5479–5543. doi: 10.1007/S10462-022-10280-8.
    [10] AGRAWAL R K, KAUR B, and AGARWAL P. Quantum inspired Particle Swarm Optimization with guided exploration for function optimization[J]. Applied Soft Computing, 2021, 102: 107122. doi: 10.1016/j.asoc.2021.107122.
    [11] 甄然, 王攀, 武晓晶, 等. 基于量子遗传算法的无人机冲突解脱方法[J]. 科学技术与工程, 2020, 20(17): 6963–6969. doi: 10.3969/j.issn.1671-1815.2020.17.038.

    ZHEN Ran, WANG Pan, WU Xiaojing, et al. A method of unmanned aerial vehicles conflict resolution based on quantum genetic algorithm[J]. Science Technology and Engineering, 2020, 20(17): 6963–6969. doi: 10.3969/j.issn.1671-1815.2020.17.038.
    [12] LIANG Peng, CHEN Yangtao, SUN Yafeng, et al. An information entropy-driven evolutionary algorithm based on reinforcement learning for many-objective optimization[J]. Expert Systems with Applications, 2024, 238: 122164. doi: 10.1016/j.eswa.2023.122164.
    [13] FERNÁNDEZ-SÁNCHEZ D, GARRIDO-MERCHÁN E C, and HERNÁNDEZ-LOBATO D. Alpha entropy search for new information-based Bayesian optimization[J]. Knowledge-Based Systems, 2025, 322: 113612. doi: 10.1016/j.knosys.2025.113612.
    [14] 张运凯, 高金, 李青, 等. 基于信息熵的自适应多分类器交通数据插值模型[J]. 河北科技大学学报, 2025, 46(3): 248–256. doi: 10.7535/hbkd.2025yx03002.

    ZHANG Yunkai, GAO Jin, LI Qing, et al. Adaptive multi classifier traffic data interpolation model based on information entropy[J]. Journal of Hebei University of Science and Technology, 2025, 46(3): 248–256. doi: 10.7535/hbkd.2025yx03002.
    [15] XU Longyan, XI Mao, GAO Ren, et al. Dynamic path planning of UAV with least inflection point based on adaptive neighborhood A* algorithm and multi-strategy fusion[J]. Scientific Reports, 2025, 15(1): 8563. doi: 10.1038/s41598-025-92406-w.
    [16] ALI H, XIONG Gang, HAIDER M H, et al. Feature selection-based decision model for UAV path planning on rough terrains[J]. Expert Systems with Applications, 2023, 232: 120713. doi: 10.1016/j.eswa.2023.120713.
    [17] AMRALLAH A, MOHAMED E M, TRAN G K, et al. UAV trajectory optimization in a post-disaster area using dual energy-aware bandits[J]. Sensors, 2023, 23(3): 1402. doi: 10.3390/s23031402.
    [18] 俞佳晨, 胡剑虹, 郑恩辉. 基于CMA-ES算法的无人机群协同救援任务分配优化[J]. 现代电子技术, 2025, 48(10): 92–96. doi: 10.16652/j.issn.1004-373x.2025.10.015.

    YU Jiachen, HU Jianhong, and ZHENG Enhui. UAV swam cooperative rescue task assignment optimization based on CMA-ES algorithm[J]. Modern Electronics Technique, 2025, 48(10): 92–96. doi: 10.16652/j.issn.1004-373x.2025.10.015.
    [19] ABBAS A, AMBAINIS A, AUGUSTINO B, et al. Challenges and opportunities in quantum optimization[J]. Nature Reviews Physics, 2024, 6(12): 718–735. doi: 10.1038/s42254-024-00770-9.
    [20] HAN Xiaokuang, DU Xianjun, and YU Ping. ATLA: A novel metaheuristic optimization algorithm inspired by the mating search behavior of longicorn beetles in the nature[J]. IOP Conference Series: Materials Science and Engineering, 2020, 782(5): 052028. doi: 10.1088/1757-899X/782/5/052028.
    [21] SHETA A, BRAIK M, AL-HIARY H, et al. Improved versions of crow search algorithm for solving global numerical optimization problems[J]. Applied Intelligence, 2023, 53(22): 26840–26884. doi: 10.1007/s10489-023-04732-z.
    [22] QU Shizheng, LIU Huan, XU Yinghang, et al. Application of spiral enhanced whale optimization algorithm in solving optimization problems[J]. Scientific Reports, 2024, 14(1): 24534. doi: 10.1038/s41598-024-74881-9.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-23
  • 修回日期:  2025-10-16
  • 网络出版日期:  2025-10-27

目录

    /

    返回文章
    返回