高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

方向调制多载波通感一体化波形设计研究

黄高见 张盛壮 丁元 廖可非 金双根 李兴旺 欧阳缮

黄高见, 张盛壮, 丁元, 廖可非, 金双根, 李兴旺, 欧阳缮. 方向调制多载波通感一体化波形设计研究[J]. 电子与信息学报. doi: 10.11999/JEIT250680
引用本文: 黄高见, 张盛壮, 丁元, 廖可非, 金双根, 李兴旺, 欧阳缮. 方向调制多载波通感一体化波形设计研究[J]. 电子与信息学报. doi: 10.11999/JEIT250680
HUANG Gaojian, ZHANG Shengzhuang, DING Yuan, LIAO Kefei, JIN Shuanggen, LI Xingwang, OUYANG Shan. Research on Directional Modulation Multi-carrier Waveform Design for Integrated Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250680
Citation: HUANG Gaojian, ZHANG Shengzhuang, DING Yuan, LIAO Kefei, JIN Shuanggen, LI Xingwang, OUYANG Shan. Research on Directional Modulation Multi-carrier Waveform Design for Integrated Sensing and Communication[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250680

方向调制多载波通感一体化波形设计研究

doi: 10.11999/JEIT250680 cstr: 32379.14.JEIT250680
基金项目: 国家自然科学基金(62571182),中国博士后面上项目(2024M750801),河南理工大学河南省光电检测与传感集成工程技术研究中心开放课题(KF202505),河南省科技攻关项目(252102211118),测绘科学与技术“双一流”学科创建项目高层次研究课题培育项目(GCCYJ202408),测绘与信息工程学院双一流测绘学科优秀博士、硕士论文发展基金项目(SYSB202506)
详细信息
    作者简介:

    黄高见:男,讲师,研究方向为通感一体化、阵列信号处理、物理层安全通信等

    张盛壮:男,硕士生,研究方向为通感一体化

    丁元:男,副教授,研究方向为天线阵列、物理层安全

    廖可非:男,教授,研究方向为雷达成像、RCS测量、认知雷达等

    金双根:男,教授,研究方向为卫星导航定位技术等

    李兴旺:男,副教授,研究方向为无线通信、新一代宽带移动通信系统的新理论及技术

    欧阳缮:男,教授,研究方向为雷达信号处理、通信信号处理

    通讯作者:

    黄高见 g.huang@hpu.edu.cn

  • 中图分类号: TN911

Research on Directional Modulation Multi-carrier Waveform Design for Integrated Sensing and Communication

Funds: The National Natural Science Foundation of China (62571182), China Postdoctoral Science Foundation (2024M750801), The Opening Project of Henan Province Engineering Technology Research Center for Photoelectric Detection and Sensing Integration, Henan Polytechnic University (KF202505), Henan Scientific and Technological Research Project (252102211118), The Surveying and Mapping Science and Technology Double First-Class Discipline Establishment Project for Nurturing High-level Research Topics (GCCYJ202408), The Faculty of Surveying and Information Engineering Double First-Class Mapping Discipline Outstanding Doctoral and Master’s Thesis Development Fund Project (SYSB202506)
  • 摘要: 通感一体化(ISAC)利用一种波形实现雷达感知与无线通信两种功能,能够消除雷达与通信电磁互扰,显著提高频谱效率、信息交互效率,已经成为6G潜在关键技术。目前,如何设计ISAC信号波形成为一体化设计广泛研究重点。方向调制(DM)一体化信号波形,因其独特的信号设计特点,能够在一体化信号设计种呈现出天然优势。该文从DM技术出发,介绍DM一体化波形设计理论、优势及挑战,并提出多载波DM一体化信号波形旁瓣干扰抑制机理,分析DM一体化波形参数对安全通信及雷达感知性能影响,为一体化波形在复杂环境中的安全、抗干扰需求设计提供新思路。
  • 图  1  近场直接天线调制信号星座示意图[30]

    图  2  通用模拟和数字DM发射机架构

    图  3  TMA OFDM-DM合成网络与Un(t)波形示意图

    图  4  OFDM-DM ISAC应用场景以及系统架构

    图  5  OFDM-DM ISAC与OFDM ISAC方案BER对比

    图  6  时域相关算法下OFDM和OFDM-DM ISAC的雷达距离剖面图

    图  7  2-D FFT方法获得的目标距离-相对速度二维雷达像

    图  8  2-D FFT方法获得的目标距离-相对速度雷达像剖面图

    表  1  ISAC波形设计方法的分类与比较

    一体化波形分类典型波形优点缺点
    基于雷达信号LFM波形恒模、大带宽通信数据速率低
    基于通信信号扩频发射功率容忍度高、多址通信测速计算量大
    OFDM抗多径干扰能力强、频谱利用率高、易于实现高速场景下多普勒容忍差
    OTFS适用于高速场景复杂度高
    基于雷达-通信联合设计设计新型波形雷达和通信性能折中复杂度高,硬件实现复杂
    下载: 导出CSV

    表  2  典型DM合成方法分类与比较

    合成方式天线类型贡献参考文献
    基于可重构天线阵列的设计方法近场直接天线调制引入了方向性安全传输的概念[30]
    基于可重构天线激励的设计方法相控阵使用相控阵合成DM波形[31]
    相控阵方向调制的矢量表示,正交矢量法[29]
    自由合成的设计方法方向回溯天线多径接收[32]
    傅立叶罗特曼透镜实时数据传输,双波束独立传输信息[33]
    TMAOFDM-DM[34]
    下载: 导出CSV
  • [1] LU Shihang, LIU Fan, LI Yunxin, et al. Integrated sensing and communications: Recent advances and ten open challenges[J]. IEEE Internet of Things Journal, 2024, 11(11): 19094–19120. doi: 10.1109/JIOT.2024.3361173.
    [2] 林粤伟, 张奇勋, 尉志青, 等. 通信感知一体化硬件设计——现状与展望[J]. 电子与信息学报, 2025, 47(1): 1–21. doi: 10.11999/JEIT240012.

    LIN Yuewei, ZAHNG Qixun, WEI Zhiqing, et al. Status and prospect of hardware design on integrated sensing and communication[J]. Journal of Electronics & Information Technology, 2025, 47(1): 1–21. doi: 10.11999/JEIT240012.
    [3] ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, Philadelphia, USA, 2003: 611–614. doi: 10.1109/MWSYM.2003.1211013.
    [4] CHEN Xiaobo, WANG Xiaomo, ZHANG Zhao, et al. A communication with LFM carrier modulated by MSK scheme[C]. IEEE ICCP2012, Nanjing, China, 2012: 461–463. (查阅网上资料, 未找到本条文献信息, 请确认).
    [5] LIU Zhipeng, CHEN Xiaobo, WANG Xiaomo, et al. Communication analysis of integrated waveform based on LFM and MSK[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–5. doi: 10.1049/cp.2015.1017.
    [6] 李晓柏, 杨瑞娟, 陈新永, 等. 基于分数阶傅里叶变换的雷达通信一体化信号共享研究[J]. 信号处理, 2012, 28(4): 487–494. doi: 10.3969/j.issn.1003-0530.2012.04.004.

    LI Xiaobai, YANG Ruijuan, CHEN Xinyong, et al. The sharing signal for integrated radar and communication based on FRFT[J]. Journal of Signal Processing, 2012, 28(4): 487–494. doi: 10.3969/j.issn.1003-0530.2012.04.004.
    [7] FAGHIH-NAINI S, SCHNEIDER M, PETERS S, et al. Combining an FMCW radar system with FSK modulation to a joint communication and sensing system[J]. International Journal of Microwave and Wireless Technologies, 2025, 17(2): 381–388. doi: 10.1017/S1759078725000121.
    [8] CAO Yu and YU Qiyue. A dual mode multi-beam and integrated CPM-LFM signal for dual-functional radar communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15270–15285. doi: 10.1109/TVT.2024.3412711.
    [9] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219.
    [10] MIZUI K, UCHIDA M, and NAKAGAWA M. Vehicle-to-vehicle communication and ranging system using spread spectrum technique (Proposal of Boomerang Transmission System)[C]. IEEE 43rd Vehicular Technology Conference, Secaucus, USA, 1993: 335–338. doi: 10.1109/VETEC.1993.507206.
    [11] UCHIDA M, KAGAWA Y, and OKUNO A. A vehicle-to-vehicle communication and ranging system based on spread spectrum technique-SS communication radar[C]. VNIS'94 - 1994 Vehicle Navigation and Information Systems Conference, Yokohama, Japan, 1994: 169–174. doi: 10.1109/VNIS.1994.396845.
    [12] XU Shaojian, CHEN Bing, and ZHANG Ping. Radar-communication integration based on DSSS techniques[C]. 2006 8th International Conference on Signal Processing, Guilin, China, 2006: 16–20. doi: 10.1109/ICOSP.2006.346041.
    [13] JAMIL M, ZEPERNICK H, and PETTERSSON M. On integrated radar and communication systems using Oppermann sequences[C]. MILCOM 2008-2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
    [14] 赵羚岚, 杨奕冉, 刘喜庆, 等. 基于完全互补码扩频的通信雷达一体化系统[J]. 无线电通信技术, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.

    ZHAO Linglan, YANG Yiran, LIU Xiqing, et al. Integrated communication and radar system based on complete complementary code spread spectrum[J]. Radio Communications Technology, 2023, 49(1): 118–125. doi: 10.3969/j.issn.1003-3114.2023.01.014.
    [15] 叶子豪, 鄢社锋, 杨斌斌. 基于子载波间干扰深度估计的MIMO-OFDM水声通信接收机[J]. 电子与信息学报, 2023, 45(7): 2519–2527. doi: 10.11999/JEIT220794.

    YE Zihao, YAN Shefeng, and YANG Binbin. MIMO-OFDM underwater acoustic communication receiver based on intercarrier interference depth estimation[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2519–2527. doi: 10.11999/JEIT220794.
    [16] LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings - Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734.
    [17] STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [18] 韩潇弘毅, 鲍蕾蕾, 杨瑞娟, 等. 基于OFDM雷达通信共享信号性能分析[J]. 空军预警学院学报, 2013, 27(4): 270–274. doi: 10.3969/j.issn.2095-5839.2013.04.011.

    HAN Xiaohongyi, BAO Leilei, YANG Ruijuan, et al. Performance analysis of radar and communication signals sharing based on OFDM[J] Journal of Air Force Early Warning Academy, 2013, 27(4): 270–274. doi: 10.3969/j.issn.2095-5839.2013.04.011.
    [19] 刘永军, 廖桂生, 杨志伟. 基于OFDM的雷达通信一体化波形模糊函数分析[J]. 系统工程与电子技术, 2016, 38(9): 2008–2018. doi: 10.3969/j.issn.1001-506X.2016.09.07.

    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Ambiguity function analysis of integrated radar and communication waveform based on OFDM[J]. Systems Engineering and Electronics, 2016, 38(9): 2008–2018. doi: 10.3969/j.issn.1001-506X.2016.09.07.
    [20] HUANG Gaojian, DING Yuan, OUYANG Shan, et al. Index modulation for OFDM RadCom systems[J]. The Journal of Engineering, 2021, 2021(2): 61–72. doi: 10.1049/tje2.12003.
    [21] HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
    [22] YUAN Weijie, ZHOU Lin, DEHKORDI S K, et al. From OTFS to DD-ISAC: Integrating sensing and communications in the delay Doppler domain[J]. IEEE Wireless Communications, 2024, 31(6): 152–160. doi: 10.1109/MWC.018.2300607.
    [23] WEI Xinyuan, YUAN Weijie, ZHANG Kecheng, et al. OTFS-assisted ISAC system: Delay Doppler channel estimation and SDR-based implementation[J]. IEEE Transactions on Mobile Computing, 2025, 24(11): 11865–11878. doi: 10.1109/TMC.2025.3582421.
    [24] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [25] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
    [26] WANG Jionghui, WANG Bin, FANG Jun, et al. Low-complexity joint communication and sensing beamforming for ISAC systems: A bisection search approach[J]. IEEE Internet of Things Journal, 2025, 12(13): 25620–25632. doi: 10.1109/JIOT.2025.3558954.
    [27] HUANG Gaojian, DING Yuan, OUYANG Shan, et al. Target localization using time-modulated directional modulated transmitters[J]. IEEE Sensors Journal, 2022, 22(13): 13508–13518. doi: 10.1109/JSEN.2022.3178699.
    [28] HUANG Gaojian, ZHANG Kailuo, ZHANG Yanliang, et al. Orthogonal frequency division multiplexing directional modulation waveform design for integrated sensing and communication systems[J]. IEEE Internet of Things Journal, 2024, 11(18): 29588–29599. doi: 10.1109/JIOT.2024.3367490.
    [29] DING Yuan and FUSCO V F. A vector approach for the analysis and synthesis of directional modulation transmitters[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 361–370. doi: 10.1109/TAP.2013.2287001.
    [30] BABAKHANI A, RUTLEDGE D, and HAJIMIRI A. Transmitter architectures based on near-field direct antenna modulation[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2674–2692. doi: 10.1109/JSSC.2008.2004864.
    [31] DALY M P and BERNHARD J T. Directional modulation technique for phased arrays[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2633–2640. doi: 10.1109/TAP.2009.2027047.
    [32] DING Yuan and FUSCO V. A synthesis-free directional modulation transmitter using retrodirective array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 428–441. doi: 10.1109/JSTSP.2016.2605066.
    [33] DING Yuan, ZHANG Yunhua, and FUSCO Vincent. Fourier Rotman lens enabled directional modulation transmitter[J]. International Journal of Antennas and Propagation, 2015, 2015: 285986. doi: 10.1155/2015/285986.
    [34] HUANG Gaojian, DING Yuan, OUYANG Shan, et al. Three-state time modulated array-enabled directional modulation for secure orthogonal frequency-division multiplexing wireless transmission[J]. IET Communications, 2022, 16(19): 2321–2327. doi: 10.1049/cmu2.12485.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-21
  • 修回日期:  2025-10-25
  • 网络出版日期:  2025-11-04

目录

    /

    返回文章
    返回