高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质量图引导的频谱数据高能量区域保真压缩方法

刘向丽 李赞 陈一丰 陈乐

刘向丽, 李赞, 陈一丰, 陈乐. 质量图引导的频谱数据高能量区域保真压缩方法[J]. 电子与信息学报. doi: 10.11999/JEIT250650
引用本文: 刘向丽, 李赞, 陈一丰, 陈乐. 质量图引导的频谱数据高能量区域保真压缩方法[J]. 电子与信息学报. doi: 10.11999/JEIT250650
LIU Xiangli, LI Zan, CHEN Yifeng, CHEN Le. Quality Map-guided Fidelity Compression Method for High-energy Regions of Spectral Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250650
Citation: LIU Xiangli, LI Zan, CHEN Yifeng, CHEN Le. Quality Map-guided Fidelity Compression Method for High-energy Regions of Spectral Data[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250650

质量图引导的频谱数据高能量区域保真压缩方法

doi: 10.11999/JEIT250650 cstr: 32379.14.JEIT250650
基金项目: 国家自然科学基金(62531019),国家重点研发计划(2022YFC3301300),国家自然科学基金创新研究群体项目(62121001)
详细信息
    作者简介:

    刘向丽:女,副教授,研究方向为数据压缩、语义通信

    李赞:女,教授,研究方向为隐蔽通信、电磁频谱管控

    陈一丰:男,硕士研究生,研究方向为数据压缩

    陈乐:男,硕士研究生,研究方向为数据压缩

    通讯作者:

    刘向丽 xlliu@mail.xidian.edu.cn

  • 中图分类号: TN95

Quality Map-guided Fidelity Compression Method for High-energy Regions of Spectral Data

Funds: National Natural Science Foundation of China (62531019),National Key R&D Program of China (2022YFC3301300), Innovative Research Groups of the National Natural Science Foundation of China (62121001)
  • 摘要: 在通信与雷达技术智能化演进过程中,射频数据压缩效率已成为制约传输带宽扩展和系统能效提升的关键制约因素。传统压缩方法在面对非均匀能量分布复杂场景时,难以在压缩率与重构精度间取得平衡。针对非均匀能量分布的频谱数据保真压缩难题,本文提出质量图引导的频谱数据高能量区域保真压缩方法。该方法通过构建三维能量掩码动态引导编码器增强高能量区域特征,结合多级复数卷积与逆向残差连接实现高效特征提取与重构。核心创新包括:复数提取网络生成质量图,实现能量与幅度分布多尺度建模;结合门控归一化抑制低能量噪声;引入残差结构和空间特征变换模块保留高频细节。实验结果表明,该方法在公开数据集RML2018.01a和自建数据集上的重构精度优于现有的经典算法,消融实验验证了质量图对高能量区域的关键保护作用,为非均匀能量分布数据压缩提供了新思路。
  • 图  1  损失函数流程图

    图  2  压缩网络结构图

    图  3  质量图特征提取器结构图

    图  4  深度特征编码器结构图

    图  5  $ ML{P}_{shared} $与$ MLP $结构图

    图  6  残差空间特征变换模块结构图

    图  7  PSNR_SNR曲线图

    图  8  有无质量图幅度谱局部区域对比图

    图  9  有无质量图误差指标对比曲线图

    图  10  各算法压缩率–性能关系曲线

    图  11  各算法压缩率–性能关系曲线

    表  1  对比实验性能结果

    压缩结果 压缩方法 –4 dB数据 2 dB数据 8 dB数据 14 dB数据 20 dB数据
    压缩率(%) 质量图驱动压缩 7.280 7.215 7.127 7.015 6.962
    LFZip 7.754 6.957 6.312 5.967 5.798
    CORAD 7.854 6.736 5.961 5.281 4.815
    文献[28] 7.902 6.885 6.210 5.642 5.301
    PSNR(dB) 质量图驱动压缩 35.75 40.45 43.56 44.89 45.24
    LFZip 29.45 34.78 37.67 39.24 40.65
    CORAD 28.63 33.78 37.46 39.38 40.56
    文献[28] 30.12 35.26 37.88 39.05 40.12
    MRE(%) 质量图驱动压缩 6.91 4.46 3.24 2.56 2.17
    LFZip 8.45 6.27 5.25 4.46 3.94
    CORAD 8.82 6.38 5.12 4.65 4.13
    文献[28] 8.20 6.10 5.05 4.39 3.86
    相关系数 质量图驱动压缩 0.898 0.923 0.941 0.949 0.956
    LFZip 0.832 0.867 0.894 0.913 0.935
    CORAD 0.826 0.856 0.892 0.908 0.938
    文献[28] 0.841 0.872 0.898 0.916 0.937
    下载: 导出CSV

    表  2  数据集RML2018.01a下本文方法与 LFZip、CORAD、文献[28] 的 BD-Rate 与 BD-PSNR 对比结果

    对比方法 本文方法(基准) LFZip CORAD 文献[28]
    BD-Rate(%) 0 –14.25 –21.67 –15.72
    BD-PSNR(dB) 0 –8.83 –10.86 –8.57
    下载: 导出CSV

    表  3  对比实验性能结果

    压缩结果 压缩方法 –4 dB数据 2 dB数据 8 dB数据 14 dB数据 20 dB数据
    压缩率(%) 质量图驱动压缩 7.104 6.882 6.718 6.547 6.403
    LFZip 7.506 6.700 6.124 5.716 5.478
    CORAD 7.625 6.482 5.794 5.279 5.049
    文献[28] 7.677 6.551 5.927 5.502 5.194
    PSNR(dB) 质量图驱动压缩 34.61 39.21 42.51 43.89 44.55
    LFZip 28.46 33.62 36.54 38.13 39.53
    CORAD 27.88 33.71 36.08 37.84 39.13
    文献[28] 29.09 34.03 36.59 37.89 39.20
    MRE(%) 质量图驱动压缩 7.53 4.94 3.58 2.69 2.27
    LFZip 9.00 6.72 5.69 4.93 4.32
    CORAD 9.38 6.90 5.93 5.24 4.62
    文献[28] 8.83 6.63 5.65 5.04 4.82
    相关系数 质量图驱动压缩 0.885 0.915 0.935 0.942 0.955
    LFZip 0.821 0.836 0.870 0.893 0.926
    CORAD 0.808 0.832 0.877 0.898 0.930
    文献[28] 0.827 0.860 0.889 0.907 0.932
    下载: 导出CSV

    表  4  在自建数据集下本文方法与 LFZip、CORAD、文献[28] 的 BD-Rate 与 BD-PSNR 对比结果

    对比方法 本文方法(基准) LFZip CORAD 文献[28]
    BD-Rate(%) 0 –14.10 –20.11 –16.73
    BD-PSNR(dB) 0 –7.66 –8.41 –7.84
    下载: 导出CSV
  • [1] VAN DEN OORD A, KALCHBRENNER N, and KAVUKCUOGLU K. Pixel recurrent neural networks[C]. Proceedings of the 33rd International Conference on Machine Learning, New York, USA, 2016: 1747–1756.
    [2] VAN DEN OORD A, KALCHBRENNER N, VINYALS O, et al. Conditional image generation with PixelCNN decoders[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 4797–4805.
    [3] SALIMANS T, KARPATHY A, CHEN Xi, et al. PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications[C]. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017: 1–10.
    [4] REED S, VAN DEN OORD A, KALCHBRENNER N, et al. Parallel multiscale autoregressive density estimation[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 2912–2921.
    [5] CHEN Xi, MISHRA N, ROHANINEJAD M, et al. PixelSNAIL: An improved autoregressive generative model[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 864–872.
    [6] CHANDAK S, TATWAWADI K, WEN Chengtao, et al. LFZip: Lossy compression of multivariate floating-point time series data via improved prediction[C]. Proceedings of 2020 Data Compression Conference (DCC), Snowbird, USA, 2020: 342–351. doi: 10.1109/DCC47342.2020.00042.
    [7] HARIS T and ONAK K. Compression barriers for autoregressive transformers[EB/OL]. https://arxiv.org/abs/2502.15955, 2025.
    [8] LOGUE K. Glaucus: A complex-valued radio signal autoencoder[C]. Proceedings of 2023 IEEE Aerospace Conference, Big Sky, USA, 2023: 1–5. doi: 10.1109/AERO55745.2023.10115599.
    [9] ROSENBERGER J, KÜBEL A, and ROTHFUß F. Comparison and extension of autoencoder models for uni- and multivariate signal compression in IIoT[C]. Proceedings of 2022 Data Compression Conference (DCC), Snowbird, USA, 2022: 481. doi: 1 0.1109/DCC52660.2022.00092.
    [10] HE Peng, MENG Shaoming, CUI Yaping, et al. Compression and encryption of heterogeneous signals for internet of medical things[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(5): 2524–2535. doi: 10.1109/JBHI.2023.3264997.
    [11] KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. Proceedings of the 2nd International Conference on Learning Representations, Banff, Canada, 2014: 1–14.
    [12] DINH L, SOHL-DICKSTEIN J, and BENGIO S. Density estimation using real NVP[C]. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017: 1–32.
    [13] KUMBLE L and PATIL K K. An improved data compression framework for wireless sensor networks using stacked convolutional autoencoder (S-CAE)[J]. SN Computer Science, 2023, 4(4): 419. doi: 10.1007/s42979-023-01845-7.
    [14] LIANG Zhenyu, CHEN Letian, and XIAO Wenbin. Compression autoencoder for high-resolution ocean sound speed profile data[J]. Journal of Physics: Conference Series, 2024, 2718: 012067. doi: 10.1088/1742-6596/2718/1/012067.
    [15] BASTOLA S and TEKES C. Vector-quantization variational autoencoder based data rate reduction for wireless ultrasound imaging systems[C]. Proceedings of the SoutheastCon 2024, Atlanta, USA, 2024: 1426–1431. doi: 10.1109/SoutheastCon52093.2024.10500188.
    [16] RODRIGUEZ A, KAASARAGADDA Y, and KOKALJ-FILIPOVIC S. Deep-learned compression for radio-frequency signal classification[C]. Proceedings of 2024 IEEE International Symposium on Information Theory Workshops, Athens, Greece, 2024: 1–6. doi: 10.1109/ISIT-W61686.2024.10591760.
    [17] KOMPELLA S K, DAVASLIOGLU K, SAGDUYU Y E, et al. Augmenting training data with vector-quantized variational autoencoder for classifying RF signals[C]. Proceedings of the MILCOM 2024 - 2024 IEEE Military Communications Conference, Washington, USA, 2024: 1–6. doi: 10.1109/MILCOM61039.2024.10773675.
    [18] TODERICI G, O’MALLEY S M, HWANG S J, et al. Variable rate image compression with recurrent neural networks[C]. Proceedings of the 4th International Conference on Learning Representations, San Juan, USA, 2024: 1–12.
    [19] DASAN E and JEYABALAN N S J. Towards the analysis of regularized denoising autoencoder for biosignal processing: Lasso versus ridge norms[J]. Wireless Personal Communications, 2024, 134(1): 319–338. doi: 10.1007/s11277-024-10912-y.
    [20] RUSSELL M and WANG Peng. Physics-informed deep learning for signal compression and reconstruction of big data in industrial condition monitoring[J]. Mechanical Systems and Signal Processing, 2022, 168: 108709. doi: 10.1016/j.ymssp.2021.108709.
    [21] CHEN Tong, LIU Haojie, MA Zhan, et al. End-to-end learnt image compression via non-local attention optimization and improved context modeling[J]. IEEE Transactions on Image Processing, 2021, 30: 3179–3191. doi: 10.1109/TIP.2021.3058615.
    [22] XIE Huiqiang and QIN Zhijin. A lite distributed semantic communication system for internet of things[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 142–153. doi: 10.1109/JSAC.2020.3036968.
    [23] ELBIR A M, PAPAZAFEIROPOULOS A K, and CHATZINOTAS S. Federated learning for physical layer design[J]. IEEE Communications Magazine, 2021, 59(11): 81–87. doi: 10.1109/MCOM.101.2100138.
    [24] ZHANG Yangyang, YU Danyang, ZHANG Xichang, et al. An autoregressive model-based differential framework with learnable regularization for CSI feedback in time-varying massive MIMO systems[J]. IEEE Communications Letters, 2025, 29(1): 230–234. doi: 10.1109/LCOMM.2024.3512537.
    [25] ALTED F. Blosc: A blocking, shuffling and loss-less compression library[EB/OL]. https://blosc.org, 2018. (查阅网上资料,未找到本条文献信息,请确认).
    [26] KHELIFATI A, KHAYATI M, and CUDRÉ-MAUROUX P. CORAD: Correlation-aware compression of massive time series using sparse dictionary coding[C]. Proceedings of 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, USA, 2019: 2289–2298. doi: 10.1109/BigData47090.2019.9005580.
    [27] MAULIDINA A P, WIJAYA R A, MAZEL K, et al. Comparative study of data compression algorithms: Zstandard, zlib & LZ4[C]. Proceedings of the 2nd International Conference on Science, Engineering Management and Information Technology, Ankara, Turkey, 2024: 394–406. doi: 10.1007/978-3-031-72284-4_24.
    [28] ZENG Yijing, CALVO-PALOMINO R, GIUSTINIANO D, et al. Adaptive uplink data compression in spectrum crowdsensing systems[J]. IEEE/ACM Transactions on Networking, 2023, 31(5): 2207–2221. doi: 10.1109/TNET.2023.3239378.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 修回日期:  2025-12-01
  • 录用日期:  2025-12-01
  • 网络出版日期:  2025-12-09

目录

    /

    返回文章
    返回