高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轨道角动量的无线供能NOMA通信系统设计与优化

陈瑞瑞 陈雨 冉佳乐 孙彦景 李松

陈瑞瑞, 陈雨, 冉佳乐, 孙彦景, 李松. 基于轨道角动量的无线供能NOMA通信系统设计与优化[J]. 电子与信息学报. doi: 10.11999/JEIT250634
引用本文: 陈瑞瑞, 陈雨, 冉佳乐, 孙彦景, 李松. 基于轨道角动量的无线供能NOMA通信系统设计与优化[J]. 电子与信息学报. doi: 10.11999/JEIT250634
CHEN Ruirui, CHEN Yu, RAN Jiale, SUN Yanjing, LI Song. Design and Optimization for Orbital Angular Momentum–based wireless-powered Noma Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250634
Citation: CHEN Ruirui, CHEN Yu, RAN Jiale, SUN Yanjing, LI Song. Design and Optimization for Orbital Angular Momentum–based wireless-powered Noma Communication System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250634

基于轨道角动量的无线供能NOMA通信系统设计与优化

doi: 10.11999/JEIT250634 cstr: 32379.14.JEIT250634
基金项目: 国家自然科学基金(62441115),船舶领域重大项目(CBG01N23-01-04),海南省省属科研院所技术创新项目(KYYSGY2024-002,KYYSGY2024-005)
详细信息
    作者简介:

    陈瑞瑞:男,讲师,研究方向为OAM通信、NOMA通信和无人机通信

    陈雨:女,硕士生,研究方向为OAM通信和NOMA通信

    冉佳乐:男,硕士生,研究方向为OAM通信和NOMA通信

    孙彦景:男,教授,院长,研究方向为无人机通信、应急通信和工业物联网

    李松:男,副教授,研究方向为边缘计算和通感一体化通信

    通讯作者:

    陈瑞瑞, rrchen@cumt.edu.cn

  • 中图分类号: TN929.5

Design and Optimization for Orbital Angular Momentum–based wireless-powered Noma Communication System

Funds: The National Natural Science Foundation of China (62441115), Major Project in Shipbuilding Industry (CBG01N23-01-04), Project of Technical Innovation of Hainan Scientific Research Institutes (KYYSGY2024-002, KYYSGY2024-005)
  • 摘要: 视距信道是实现高效无线供能NOMA通信的必要条件,然而其强相关性将严重限制空间自由度,导致传统空间复用技术难以获得容量增益。利用新维度的轨道角动量(Orbital Angular Momentum, OAM),该文设计了基于OAM的无线供能NOMA通信系统,其可以通过模态复用独立传输多路信息从而在视距信道下显著提高通信容量。通过转化收集能量为信息上传的可实现容量,该文在通信容量和收集能量的阈值约束下构建了系统的总容量最大化问题。然后,将系统总容量最大化问题分解为两个子问题,推导了最优功率分割因子的闭式表达式,并利用次梯度方法获得了最优的功率分配。仿真结果表明,与传统无线通信系统相比,所提出的基于OAM的无线供能NOMA通信系统能够有效提高容量性能。
  • 图  1  基于OAM的无线供能NOMA通信系统模型

    图  2  系统模型在 yz平面上的投影和 xz平面上的投影

    图  3  不同OAM模态下ID的总容量与最大发射功率的关系

    图  4  ID的总容量与PS因子的关系

    图  5  系统总容量与收集能量阈值的关系

    图  6  系统总容量与通信容量阈值的关系

    表  1  符号表示

    符号 表示
    ${\ell _k}$, $ {{\boldsymbol{H}}_k} $, ${\beta _k}$ OAM模态,发射UCA和接收UCA之间信道矩阵,
    PS因子
    ${n_k}$, ${m_k}$ 发射天线单元,接收天线单元
    $ {D_k} $, $ {d_k} $ 发射UCA的半径,接收UCA的半径
    $ {\omega _{k, x}} $, $ {\omega _{k, y}} $ 接收UCA绕x轴的旋转角度,接收UCA绕y轴的
    旋转角度
    $ {{\boldsymbol{\varTheta}} _x}(\omega ) $, 围绕x轴的旋转矩阵,围绕y轴的旋转矩阵
    $ {{\boldsymbol{\varTheta}} _y}(\omega ) $ 发射UCA的初始方位角,接收UCA的初始方位角
    ${\theta _k}$, ${\phi _k}$ 信息传输容量,所有ID信息传输容量的总和
    $ {R_k} $, $ R $ 收集到的能量,所有ID的总收集能量
    $ {E_k} $, E 功率分配矩阵,同心UCA的发射信号向量,
    高斯白噪声
    ${\boldsymbol{P}}$, ${\boldsymbol{s}}$, $ {{\boldsymbol{n}}} $ 载波波长,由于天线方向图、相位旋转等因素引起的
    增益衰减,
    $\lambda $, $ \tau $, ${{\boldsymbol{W}}_{{\text{OAM}}}}$ OAM调制矩阵
    下载: 导出CSV
  • [1] VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5g advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117–1174. doi: 10.1109/COMST.2022.3151028.
    [2] DASH S P, JOSHI S, SATAPATHY S C, et al. A cybertwin-based 6g cooperative IoE communication network: Secrecy outage analysis[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4922–4932. doi: 10.1109/TII.2021.3140125.
    [3] KISHK M A and DHILLON H S. Coexistence of RF-powered IoT and a primary wireless network with secrecy guard zones[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1460–1473. doi: 10.1109/TWC.2017.2778703.
    [4] 马克明, 陈亚军, 胡鑫, 等. 面向物联网无线携能通信系统的机会安全传输方案[J]. 通信学报, 2019, 40(2): 70–81. doi: 10.11959/j.issn.1000?436x.2019036.

    MA Keming, CHEN Yajun, HU Xin, et al. Opportunistic secure transmission scheme for simultaneous wireless information and power transfer[J]. Journal on Communications, 2019, 40(2): 70–81. doi: 10.11959/j.issn.1000?436x.2019036.
    [5] 徐勇军, 刘子腱, 李国权, 等. 基于NOMA的无线携能D2D通信鲁棒能效优化算法[J]. 电子与信息学报, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.

    XU Yongjun, LIU Zijian, LI Guoquan, et al. Robust energy efficiency optimization algorithm for NOMA-based D2D communication with simultaneous wireless information and power transfer[J]. Journal of Electronics & Information Technology, 2021, 43(5): 1289–1297. doi: 10.11999/JEIT200175.
    [6] PERERA T D P, JAYAKODY D N K, SHARMA S K, et al. Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018, 20(1): 264–302. doi: 10.1109/COMST.2017.2783901.
    [7] XU Kui, SHEN Zhexian, WANG Yurong, et al. Hybrid time-switching and power splitting SWIPT for full-duplex massive MIMO systems: A beam-domain approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7257–7274. doi: 10.1109/TVT.2018.2831790.
    [8] CHEN Jie, ZHANG Lin, LIANG Yingchang, et al. Resource allocation for wireless-powered IoT networks with short packet communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 1447–1461. doi: 10.1109/TWC.2019.2893335.
    [9] YU Yu, TANG Jie, HUANG Jiayi, et al. Multi-objective optimization for UAV-assisted wireless powered IoT networks based on extended DDPG algorithm[J]. IEEE Transactions on Communications, 2021, 69(9): 6361–6374. doi: 10.1109/TCOMM.2021.3089476.
    [10] ZHU Zhengyu, LI Zheng, CHU Zheng, et al. Resource allocation for intelligent reflecting surface assisted wireless powered IoT systems with power splitting[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 2987–2998. doi: 10.1109/TWC.2021.3117346.
    [11] CHU Zheng, XIAO Pei, MI De, et al. Multi-IRS assisted multi-cluster wireless powered IoT networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4712–4728. doi: 10.1109/TWC.2022.3228017.
    [12] ZHAI Liangsen, ZOU Yulong, and ZHU Jia. Stackelberg game-based multiple access design for intelligent reflecting surface assisted wireless powered IoT networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(10): 6883–6897. doi: 10.1109/TWC.2023.3246561.
    [13] KUMAR D, KUMAR SINGH C, ALCARAZ LÓPEZ O L, et al. Performance analysis of passive/active RIS aided wireless-powered IoT network with nonlinear energy harvesting[J]. IEEE Transactions on Wireless Communications, 2025, 24(2): 1132–1145. doi: 10.1109/TWC.2024.3505296.
    [14] ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G Systems: Potentials and Challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/COMST.2016.2621116.
    [15] 李兴旺, 王新莹, 田心记, 等. 基于非理想条件可重构智能超表面辅助无线携能通信-非正交多址接入系统通感性能研究[J]. 电子与信息学报, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.

    LI Xingwang, WANG Xinying, TIAN Xinji, et al. Communication and sensing performance analysis of RIS-assisted SWIPT-NOMA system under non-ideal conditions[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2434–2442. doi: 10.11999/JEIT231395.
    [16] KHAVARI-MOGHADDAM S, FARAHMAND S, RAZAVIZADEH S M, et al. Optimum solutions for weighted sum-rate of NOMA and TDMA in wireless-powered IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(2): 3302–3315. doi: 10.1109/JIOT.2023.3297719.
    [17] WANG Jie, KANG Xin, SUN Sumei, et al. Throughput maximization for peer-assisted wireless powered IoT NOMA networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(8): 5278–5291. doi: 10.1109/TWC.2020.2991400.
    [18] LI Xingwang, WANG Qunshu, LIU Meng, et al. Cooperative wireless-powered NOMA relaying for B5G IoT networks with hardware impairments and channel estimation errors[J]. IEEE Internet of Things Journal, 2021, 8(7): 5453–5467. doi: 10.1109/JIOT.2020.3029754.
    [19] VU T H and KIM S. Performance evaluation of power-beacon-assisted wireless-powered NOMA IoT-based systems[J]. IEEE Internet of Things Journal, 2021, 14(15): 11655–11665. doi: 10.1109/JIOT.2021.3058680.
    [20] VU T H, NGUYEN T V, and KIM S. Wireless powered cognitive NOMA-based IoT relay networks: Performance analysis and deep learning evaluation[J]. IEEE Internet of Things Journal, 2022, 9(5): 3913–3929. doi: 10.1109/JIOT.2021.3100616.
    [21] NGUYEN M T, VU T H and KIM S. Performance analysis of wireless powered cooperative NOMA-based CDRT IoT networks[J]. IEEE Systems Journal, 2022, 16(4): 6501–6512. doi: 10.1109/JSYST.2022.3144023.
    [22] LYU Runyu, CHENG Wenchi, WANG Muyao, et al. A modified 3D-GBSM for OAM wireless communication at 5.8 and 28-GHz[J]. IEEE Transactions on Wireless Communications, 2025, 24(10): 8799–8813. doi: 10.1109/TWC.2025.3569098.
    [23] CHEN Rui, ZHOU Hong, MORETTI M, et al. Orbital angular momentum waves: Generation, detection, and emerging applications[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 840–868. doi: 10.1109/COMST.2019.2952453.
    [24] YU Wei, ZHOU Bin, XU Fangying, et al. The impact of asymmetric antenna element's radiation pattern and its solution analysis for UCA-based OAM communications[J]. IEEE Transactions on Vehicular Technology, 2025, 74(3): 4554–4568. doi: 10.1109/TVT.2024.3498005.
    [25] CHEN Ruirui, CHENG Wenchi, XU Keyue, et al. NOMA-enhanced IRS for wireless-powered OAM communications via joint power allocation and passive beamforming[J]. IEEE Transactions on Communications, 2025, 73(7): 5420–5432. doi: 10.1109/TCOMM.2024.3522045.
    [26] MA Xiaoyan, ZHAO Yufei, ZHANG Haixia, et al. Joint precoder and reflector design for RIS-assisted multi-user OAM communication systems[J]. IEEE Transactions on Wireless Communications, 2025. doi: 10.1109/TWC.2025.3585531. (查阅网上资料,未找到卷期页码信息,请确认).
    [27] SASAKI H, YAGI Y, FUKUMOTO H, et al. OAM-MIMO multiplexing transmission system for high-capacity wireless communications on millimeter-wave band[J]. IEEE Transactions on Wireless Communications, 2024, 23(5): 3990–4003. doi: 10.1109/TWC.2023.3313735.
    [28] CHEN Yuqi, XIONG Xiaowen, ZHENG Shilie, et al. OAM spatial field digital modulation system for physical-level secure communication[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 18472–18486. doi: 10.1109/TWC.2024.3468349.
    [29] GAO Weijun, YANG Zhirong, and HAN Chong. Channel modeling and evaluation on terahertz orbital angular momentum (OAM)-based intersatellite communications[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(7): 4840–4852. doi: 10.1109/TAP.2025.3551609.
    [30] CHEN Rui, CHEN Min, XIAO Xiao, et al. Multi-user orbital angular momentum based terahertz communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 6283–6297. doi: 10.1109/TWC.2023.3241287.
    [31] KHAN M L W, WOO J, YI Xiang, et al. A 0.31-THz orbital-angular-momentum (OAM) wave transceiver in CMOS with bits-to-OAM mode mapping[J]. IEEE Journal of Solid-State Circuits, 2022, 57(5): 1344–1357. doi: 10.1109/JSSC.2022.3141366.
    [32] ZHU Lipeng, MA Wenyan, and ZHANG Rui. Movable antennas for wireless communication: Opportunities and challenges[J]. IEEE Communications Magazine, 2024, 62(6): 114–120. doi: 10.1109/MCOM.001.2300212.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-04
  • 修回日期:  2025-10-27
  • 网络出版日期:  2025-10-31

目录

    /

    返回文章
    返回