高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贝叶斯优化驱动的粗粒度可重构密码逻辑阵列设计空间探索方法

蒋丹萍 戴紫彬 刘燕江 周朝旭 宋晓玉

蒋丹萍, 戴紫彬, 刘燕江, 周朝旭, 宋晓玉. 贝叶斯优化驱动的粗粒度可重构密码逻辑阵列设计空间探索方法[J]. 电子与信息学报. doi: 10.11999/JEIT250624
引用本文: 蒋丹萍, 戴紫彬, 刘燕江, 周朝旭, 宋晓玉. 贝叶斯优化驱动的粗粒度可重构密码逻辑阵列设计空间探索方法[J]. 电子与信息学报. doi: 10.11999/JEIT250624
JIANG Danping, DAI Zibin, LIU Yanjiang, ZHOU Zhaoxu, SONG Xiaoyu. Bayesian Optimization-Driven Design Space Exploration Method for Coarse-Grained Reconfigurable Cipher Logic Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250624
Citation: JIANG Danping, DAI Zibin, LIU Yanjiang, ZHOU Zhaoxu, SONG Xiaoyu. Bayesian Optimization-Driven Design Space Exploration Method for Coarse-Grained Reconfigurable Cipher Logic Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250624

贝叶斯优化驱动的粗粒度可重构密码逻辑阵列设计空间探索方法

doi: 10.11999/JEIT250624 cstr: 32379.14.JEIT250624
基金项目: 中国国家自然科学基金(62302519)
详细信息
    作者简介:

    蒋丹萍:女,博士生,研究方向为安全专用芯片设计、可重构计算

    戴紫彬:男,博士、教授、博士生导师,研究方向为信息安全、体系结构等

    刘燕江:男,博士、讲师,研究方向为安全专用芯片设计、侧信道攻击等

    周朝旭:男,博士生,研究方向为安全专用芯片设计、可重构计算

    宋晓玉:女,博士生,研究方向为安全专用芯片设计、可重构计算

    通讯作者:

    戴紫彬 daizb2004@126.com

  • 中图分类号: TN492; TP309.7

Bayesian Optimization-Driven Design Space Exploration Method for Coarse-Grained Reconfigurable Cipher Logic Array

Funds: The National Natural Science Foundation of China (62302519)
  • 摘要: 由于粗粒度可重构密码逻辑阵列(CGRCA)的设计空间规模巨大,导致设计评估耗时长,手工探索优化解的质量不高且搜索效率较低。为此,该文面向CGRCA架构的高维空间、多目标优化特性,提出了基于贝叶斯优化的多目标设计空间探索方法,在平衡吞吐量、面积和FU利用率的同时提升解的质量。首先,该方法利用知识感知的无监督学习采样策略获得初始样本,确保初始样本的代表性与多样性。其次,建立快速评估模型对样本进行量化评估,缩短评估性能的时长。再者,设计自适应的多采集函数并建立基于贪心的混合代理模型,提出多目标贝叶斯优化方法来搜索最优的CGRCA架构,提升搜索效率和通用性。实验结果表明,该文提出的设计空间探索方法较其他设计空间探索方法,与参考集的平均距离(ADRS)至多降低34.9%,超体积提升28.7%,吞吐量提升29.9%,面积减少6.0%,FU利用率提升11.6%,并且展现出优异的跨算法稳定性。
  • 图  1  高性能CGRCA组成结构

    图  2  帕累托前沿示意图

    图  3  MOBE概述

    图  4  快速评估-DC一致性曲线

    图  5  迭代轮数预实验

    图  6  不同DSE方法性能指标比较

    图  7  不同DSE方法在多种密码算法下的指标比较

    表  1  CGRCA设计参数

    参数符号层次取值
    可重构处理级数量rCGRA1~32
    可重构处理级内PE数量cCGRA4~8
    PE内逻辑单元数量FU1处理单元1~4
    PE内模加单元数量FU2处理单元1~4
    PE内模乘单元数量FU3处理单元1~4
    PE内移位单元数量FU4处理单元1~4
    PE内置换单元数量FU5处理单元1~4
    PE内有限域乘法单元数量FU6处理单元1~4
    前向跨级互连网络位宽K1全局互连1~4
    后向反馈互连网络位宽K2全局互连1~4
    前向跨级互连网络跨级长度P1全局互连4~32
    后向反馈互连网络跨级长度P2全局互连4~32
    存储器数量MN存储器4~16
    下载: 导出CSV

    1  知识感知的无监督学习采样策略的算法描述

     输入: 设计空间 D;初始样本数量N
     输出:初始样本集 X
     (1) X ← $\varnothing $;
     (2) T ← Halton(D, N);//构建候选样本集
     (3) l, LR ← Hierarchical_Cluster(T, l_max, weight);//计算子层数量l、子层中可重构处理级取值范围集LR
     (4) LSN ← NPS(l, LR);//计算所有子层样本簇的集LSN
     (5) for i ← 1 to l do
     (6)  LSiLSi$ \cup $Halton(lsni, lri, Len(lsni));//计算子层i候选样本集LSi
     (7)  pi, Ci ← EC_Kmeans(LSi, cn_max);//计算子层i中簇的数量pi、子层i中所有簇的集合Ci
     (8)  for j ← 1 to pi do
     (9)   $x_{ij}^*$← Centroid(cij); //选择聚类的质心作为候选样本
     (10) end for
     (11) while not converged do
     (12)  for j ← 1 to pi do
     (13)   for all x $ \in $cij do
     (14)    R(x) ← $\dfrac{1}{{|{c_{ij}}| - 1}} \times \displaystyle\sum\nolimits_{{x^{'}} \in {c_{ij}}} {||x - {x^{'}}||} $;//评估代表性
     (15)    D(x) ← $ \mathop {{\text{min}}}\nolimits_{{x^*} \in \{ x_{in}^*\} _{n = 1}^{{p_i}}\backslash \{ x_{ij}^*\} } ||x - {x^*}|| $;//评估多样性
     (16)   end for
     (17)   xij ← $ \arg \;{\max _{x \in {c_{ij}}}}[D(x) - R(x)] $;
     (18)   $\{ x_{in}^*\} _{n = 1}^{{p_i}}$←$\{ x_{in}^*\} _{n = 1}^{{p_i}}\; \cup \;\{ {x_{ij}}\} \backslash \{ x_{ij}^*\} $;
     (19)  end for
     (20) end while
     (21) return X =$\{ \{ x_{mn}^*\} _{n = 1}^{{p_i}}\} _{m = 1}^l$
    下载: 导出CSV

    2  MOBE算法描述

     输入:设计空间D;初始样本数量N;迭代次数 M
     输出: 帕累托最优集P;最优解P*
     (1) X ← Ini_Sampling(D, N);//初始采样
     (2) Y ← Evaluation(X);//评估性能
     (3) DD \ X;
     (4) Q ← (X, Y);
     (5) Initialize surrogate models;
     (6) HV ←$\varnothing $;//初始化超体积
     (7) for i ← 1 to M do
     (8)  C ← Halton(D, m);//均匀随机采样m个样本作为候选样
        本集
     (9)  x1i ← arg max(MAcq(C, M1)); //选择DKL-GP模型对应
        采集函数值最大的样本
     (10) x2i ← arg max(MAcq(C, M2));//选择随机森林模型对应
        采集函数值最大的样本
     (11) x3i ← arg max(MAcq(C, M3)); //选择神经网络模型对应
        采集函数值最大的样本
     (12) $x_i^*$← arg max(MAcq(x1i, x2i, x3i);//选择本轮迭代最优样
        本
     (13) $y_i^*$← Evaluation($x_i^*$);//评估性能
     (14) QQ$ \cup ${$x_i^*,y_i^*$};
     (15) DD \$x_i^*$;
     (16) HV ← HV$ \cup $Cal_HV(Q);//更新超体积
     (17) end for
     (18) P ← Pareto(Q);//计算帕累托最优集
     (19)P* ← Max_TH(P);//选择吞吐量最大的作为最优解
     (20) return Pareto-optimal set P and optimal solution P*
    下载: 导出CSV

    表  2  设计参数设置

    设计参数编号rcFU1FU2FU3FU4FU5FU6K1K2P1P2MN
    1241213111451816
    25521114122848
    3881423122113244
    41081312144232149
    51564132124423012
    61841141211215167
    72082212112118915
    82471111433128255
    92843213122312610
    103242112222216164
    下载: 导出CSV

    表  3  不同采样策略的实验结果

    采样算法ADRS超体积NOET
    MOBE-RS0.0390.5571.000
    MOBE-MS0.0350.5730.984
    MOBE-US0.0320.5950.980
    MOBE0.0280.6410.934
    下载: 导出CSV

    表  4  不同代理模型的实验结果

    代理模型ADRS超体积NOET
    MOBE-RF0.0410.5770.443
    MOBE-GP0.0340.5340.788
    MOBE-NN0.0310.5410.326
    MOBE0.0280.6410.934
    下载: 导出CSV

    表  6  不同DSE方法的多个指标的CV比较(%)

    DSE方法超体积CVADRS CVNOET CV
    MOBE10.2922.566.74
    AUGER12.6819.337.27
    BOOM-Explorer12.3816.257.14
    MOBE-NN17.1622.644.21
    MOBE-GP16.3121.575.31
    MOBE-RF12.0333.0316.33
    MOBE-US14.9024.978.25
    MOBE-MS14.2824.468.38
    MOBE-RS18.3619.397.88
    下载: 导出CSV

    表  5  MOBE、BOOM-Explorer和AUGER的实验结果

    DSE方法ADRS超体积NOET
    BOOM-Explorer0.0430.4980.708
    AUGER0.0380.5380.927
    MOBE0.0280.6410.934
    下载: 导出CSV
  • [1] DESHWAL A, JAYAKODI N K, JOARDAR B K, et al. MOOS: A multi-objective design space exploration and optimization framework for NoC enabled manycore systems[J]. ACM Transactions on Embedded Computing Systems (TECS), 2019, 18(5s): 77. doi: 10.1145/3358206.
    [2] KIRKPATRICK S, GELATT JR C D, and VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671–680. doi: 10.1126/science.220.4598.671.
    [3] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017.
    [4] ZHANG Qingfu and LI Hui. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712–731. doi: 10.1109/TEVC.2007.892759.
    [5] WENG Jian, LIU Sihao, DADU V, et al. DSAGEN: Synthesizing programmable spatial accelerators[C]. 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture, Valencia, Spain, 2020: 268–281. doi: 10.1109/ISCA45697.2020.00032.
    [6] TAN Cheng, XIE Chenhao, LI Ang, et al. AURORA: Automated refinement of coarse-grained reconfigurable accelerators[C]. 2021 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, 2021: 1388–1393. doi: 10.23919/DATE51398.2021.9473955.
    [7] BANDARA T K, WIJERATHNE D, MITRA T, et al. REVAMP: A systematic framework for heterogeneous CGRA realization[C]. Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 2022: 918–932. doi: 10.1145/3503222.3507772.
    [8] JOARDAR B K, KIM R G, DOPPA J R, et al. Learning-based application-agnostic 3D NoC design for heterogeneous manycore systems[J]. IEEE Transactions on Computers, 2019, 68(6): 852–866. doi: 10.1109/TC.2018.2889053.
    [9] QI Sirui, LI Yingheng, PASRICHA S, et al. MOELA: A multi-objective evolutionary/learning design space exploration framework for 3D heterogeneous manycore platforms[C]. 2023 Design, Automation & Test in Europe Conference & Exhibition, Antwerp, Belgium, 2023: 1–6. doi: 10.23919/DATE56975.2023.10137276.
    [10] KIM R G, DOPPA J R, and PANDE P P. Machine learning for design space exploration and optimization of manycore systems[C]. 2018 IEEE/ACM International Conference on Computer-Aided Design, San Diego, USA, 2018: 1–6. doi: 10.1145/3240765.3243483.
    [11] LOPES A S B and PEREIRA M M. A machine learning approach to accelerating DSE of reconfigurable accelerator systems[C]. 2020 33rd Symposium on Integrated Circuits and Systems Design, Campinas, Brazil, 2020: 1–6. doi: 10.1109/SBCCI50935.2020.9189899.
    [12] LI Jingyuan, QIU Yunhui, ZHU Guowei, et al. THRAM: A template-based heterogeneous CGRA modeling framework supporting fast DSE[C]. 2023 IEEE International Symposium on Circuits and Systems, Monterey, USA, 2023: 1–5. doi: 10.1109/ISCAS46773.2023.10182204.
    [13] PENG Bingbing, SUN Shaoyang, DAI Yuan, et al. PRAD: A Bayesian optimization-based DSE framework for parameterized reconfigurable architecture design[C]. 2023 IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines, Marina Del Rey, USA, 2023: 226–226. doi: 10.1109/FCCM57271.2023.00054.
    [14] KUANG Huizhen, ZHENG Su, and WANG Lingli. Automated design space exploration of coarse-grained reconfigurable architecture via Bayesian optimization[C]. 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology, Nangjing, China, 2022: 1–3. doi: 10.1109/ICSICT55466.2022.9963336.
    [15] DAI Yuan, LI Jingyuan, ZHU Qilong, et al. HETA: A heterogeneous temporal CGRA modeling and design space exploration via Bayesian optimization[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2024, 32(3): 505–518. doi: 10.1109/TVLSI.2023.3344536.
    [16] BAI Chen, SUN Qi, ZHAI Jianwang, et al. BOOM-Explorer: RISC-V BOOM microarchitecture design space exploration framework[C]. 2021 IEEE/ACM International Conference on Computer Aided Design, Munich, Germany, 2021: 1–9. doi: 10.1109/ICCAD51958.2021.9643455.
    [17] LI Jingyuan, HU Yihan, DAI Yuan, et al. AUGER: A multi-objective design space exploration framework for CGRAs[C]. 2023 International Conference on Field Programmable Technology, Yokohama, Japan, 2023: 88–95. doi: 10.1109/ICFPT59805.2023.00015.
    [18] MENG Pingfan, ALTHOFF A, GAUTIER Q, et al. Adaptive threshold non-Pareto elimination: Re-thinking machine learning for system level design space exploration on FPGAs[C]. 2016 Design, Automation & Test in Europe Conference & Exhibition, Dresden, Germany, 2016: 918–923.
    [19] KIM Y, MAHAPATRA R N, and CHOI K. Design space exploration for efficient resource utilization in coarse-grained reconfigurable architecture[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010, 18(10): 1471–1482. doi: 10.1109/TVLSI.2009.2025280.
    [20] CHEN Sichao, MAO Yiqing, DAI Yuan, et al. FCE: A fast CGRA architecture exploration framework[C]. 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology, Zhuhai, China, 2024: 1–3. doi: 10.1109/ICSICT62049.2024.10832017.
    [21] 王铎, 刘景磊, 严明玉, 等. 面向处理器微架构设计空间探索的加速方法综述[J]. 计算机研究与发展, 2025, 62(1): 22–57. doi: 10.7544/issn1000-1239.202330348.

    WANG Duo, LIU Jinglei, YAN Mingyu, et al. Acceleration methods for processor microarchitecture design space exploration: A survey[J]. Journal of Computer Research and Development, 2025, 62(1): 22–57. doi: 10.7544/issn1000-1239.202330348.
  • 加载中
图(7) / 表(8)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-03
  • 修回日期:  2025-10-21
  • 网络出版日期:  2025-10-24

目录

    /

    返回文章
    返回