高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种空间语义联合感知的红外无人机目标跟踪方法

于国栋 蒋一纯 刘云清 王义君 詹伟达 王春阳 冯江海 韩悦毅

于国栋, 蒋一纯, 刘云清, 王义君, 詹伟达, 王春阳, 冯江海, 韩悦毅. 一种空间语义联合感知的红外无人机目标跟踪方法[J]. 电子与信息学报. doi: 10.11999/JEIT250613
引用本文: 于国栋, 蒋一纯, 刘云清, 王义君, 詹伟达, 王春阳, 冯江海, 韩悦毅. 一种空间语义联合感知的红外无人机目标跟踪方法[J]. 电子与信息学报. doi: 10.11999/JEIT250613
YU Guodong, JIANG Yichun, LIU Yunqing, WANG Yijun, ZHAN Weida, WANG Chunyang, FENG Jianghai, HAN Yueyi. A Spatial-semantic Combine Perception for Infrared UAV Target Tracking[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250613
Citation: YU Guodong, JIANG Yichun, LIU Yunqing, WANG Yijun, ZHAN Weida, WANG Chunyang, FENG Jianghai, HAN Yueyi. A Spatial-semantic Combine Perception for Infrared UAV Target Tracking[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250613

一种空间语义联合感知的红外无人机目标跟踪方法

doi: 10.11999/JEIT250613 cstr: 32379.14.JEIT250613
基金项目: 吉林省发展与改革委员会创新能力建设专项资助项目(2024C021-8)
详细信息
    作者简介:

    于国栋:男,高级工程师,研究方向为弹道终点坐标测试

    蒋一纯:男,讲师,研究方向为图像处理与深度学习

    刘云清:男,教授,博士生导师,研究方向为数字信号处理、自动控制与测试技术等

    王义君:男,副教授,研究方向为物联网技术

    詹伟达:男,教授,博士生导师,研究方向为数字图像处理、红外图像技术与自动目标识别等

    王春阳:男,高级工程师,研究方向为弹道终点坐标测试

    冯江海:男,工程师,研究方向为弹道终点坐标测试

    韩悦毅:男,博士生,研究方向为目标检测、语义分割与目标跟踪

    通讯作者:

    王春阳 daya9527@126.com

  • 中图分类号: TP391.41

A Spatial-semantic Combine Perception for Infrared UAV Target Tracking

Funds: Jilin Province Development and Reform Commission Special Fund for Innovation Capacity Development (2024C021-8)
  • 摘要: 现有红外无人机目标跟踪方法在多尺度特征融合过程中存在空间和语义信息丢失问题,导致跟踪器无法精准定位无人机目标位置,降低了跟踪任务的成功率。针对上述问题,该文提出了一种空间语义联合感知的红外无人机目标跟踪方法。首先,提出了空间语义联合注意模块,通过空间多尺度注意模块提取多尺度长程依赖特征,增强空间上下文信息的关注,并通过全局-局部通道语义注意模块交互全局和局部通道特征,确保重要语义信息的捕获。其次,设计了双分支全局特征交互模块对模板和搜索分支特征进行有效整合,显著提高了网络的整体性能。在红外无人机数据集Anti-UAV上进行了广泛实验验证,结果表明:与现有方法相比,本方法具有更好的跟踪性能,平均状态精度达到0.769,成功率达到0.743,精确度达到0.935,均优于对比方法,并且有效性、泛化性和先进性也得到了验证。
  • 图  1  本文方法的结构图

    图  2  SCAM结构图

    图  3  SMA的内部结构

    图  4  GCSA的内部结构

    图  5  DFM结构图

    图  6  本文方法与三个典型算法在目标超出视野范围情况下的跟踪结果可视化

    图  8  本文方法与三个典型算法在复杂背景情况下的跟踪结果可视化

    图  7  本文方法与三个典型算法在飞行物干扰情况下的跟踪结果可视化

    图  9  本文与三个典型跟踪方法在自制数据集上的跟踪结果可视化

    表  1  所有跟踪方法的定量比较结果。其中,粗体表示最优结果,下划线表示次优结果

    跟踪方法平均状态精度成功率精确度FPS
    SiamCAR[2]0.2500.2360.28955.7
    Ocean[3]0.2480.2350.29143.1
    OSTrack[22]0.3520.3340.42346.4
    GRM[21]0.3660.3440.42913.5
    AiAtrack[6]0.4810.4590.58439.2
    GlobalTrack[20]0.5530.5320.7119.7
    SiamYOLO[9]0.6170.5890.78937.1
    Unicorn[7]0.6370.6210.80129.2
    EANTrack[23]0.6980.6770.86843.6
    LGTrack[24]0.7250.6960.91425
    本文方法0.7690.7430.93534.8
    下载: 导出CSV

    表  2  不同注意力模块的性能、参数量和计算量的对比结果

    评价指标SE[15]CBAM[25]CPCA[26]SCAM
    参数量(M)2.5242.5251.8461.460
    FLOPs(G)0.1050.1060.8590.657
    平均状态精度0.6430.6840.6980.723
    成功率0.6320.6770.6800.703
    精确度0.8130.8350.8410.876
    下载: 导出CSV

    表  3  SMA设置不同卷积核对网络性能的影响

    卷积核设置 平均状态精度 成功率 精确度
    (3,3,3,3) 0.665 0.636 0.827
    (5,5,5,5) 0.662 0.633 0.826
    (7,7,7,7) 0.654 0.627 0.813
    (3,5,7,9) 0.677 0.653 0.849
    (3,7,11,15) 0.657 0.632 0.817
    下载: 导出CSV

    表  4  GCSA的消融实验

    序号单/双分支全局局部平均状态精度成功率精确度
    1单分支×0.6290.6170.808
    2单分支×0.6330.6260.812
    3双分支×0.6410.6300.822
    4双分支×0.6460.6350.827
    5双分支0.6590.6470.838
    下载: 导出CSV

    表  5  DFM的有效性验证

    模块设置平均状态精度成功率精确度
    Add0.6260.6180.795
    Concat0.6300.6230.803
    DFM0.6640.6500.851
    下载: 导出CSV
  • [1] 聂伟, 张中洋, 杨小龙, 等. 基于梅尔倒谱系数的无人机探测与识别方法[J]. 电子与信息学报, 2025, 47(4): 1076–1084. doi: 10.11999/JEIT241111.

    NIE Wei, ZHANG Zhongyang, YANG Xiaolong, et al. Unmanned aerial vehicles detection and recognition method based on Mel frequency cepstral coefficients[J]. Journal of Electronics & Information Technology, 2025, 47(4): 1076–1084. doi: 10.11999/JEIT241111.
    [2] GUO Dongyan, WANG Jun, CUI Ying, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6268–6276. doi: 10.1109/CVPR42600.2020.00630.
    [3] ZHANG Zhipeng, PENG Houwen, FU Jianlong, et al. Ocean: Object-aware anchor-free tracking[C]. Proceedings of 16th European Conference on Computer Vision – ECCV 2020, Glasgow, UK, 2020: 771–787. doi: 10.1007/978-3-030-58589-1_46.
    [4] 侯志强, 王卓, 马素刚, 等. 长时视觉跟踪中基于双模板Siamese结构的目标漂移判定网络[J]. 电子与信息学报, 2024, 46(4): 1458–1467. doi: 10.11999/JEIT230496.

    HOU Zhiqiang, WANG Zhuo, MA Sugang, et al. Target drift discriminative network based on dual-template Siamese structure in long-term tracking[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1458–1467. doi: 10.11999/JEIT230496.
    [5] JIANG Nan, WANG Kuiran, PENG Xiaoke, et al. Anti-UAV: A large multi-modal benchmark for UAV tracking[J]. arXiv preprint arXiv: 2101.08466, 2021. doi: 10.48550/arXiv.2101.08466. (查阅网上资料,不确定本文献类型是否正确,请确认).
    [6] GAO Shenyuan, ZHOU Chunluan, MA Chao, et al. AiATrack: Attention in attention for transformer visual tracking[C]. Proceedings of the 17th European Conference on Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022: 146–164. doi: 10.1007/978-3-031-20047-2_9.
    [7] YAN Bin, JIANG Yi, SUN Peize, et al. Towards grand unification of object tracking[C]. Proceedings of 17th European Conference on Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022: 733–751. doi: 10.1007/978-3-031-19803-8_43.
    [8] 计忠平, 王相威, 何志伟, 等. 集成全局局部特征交互与角动量机制的端到端多目标跟踪算法[J]. 电子与信息学报, 2024, 46(9): 3703–3712. doi: 10.11999/JEIT240277.

    JI Zhongping, WANG Xiangwei, HE Zhiwei, et al. End-to-end multi-object tracking algorithm integrating global local feature interaction and angular momentum mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(9): 3703–3712. doi: 10.11999/JEIT240277.
    [9] FANG Houzhang, WANG Xiaolin, LIAO Zikai, et al. A real-time anti-distractor infrared UAV tracker with channel feature refinement module[C]. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1240. doi: 10.1109/ICCVW54120.2021.00144.
    [10] 李华耀, 钟小勇, 杨智能, 等. 结合孪生网络和Transformer的轻量级无人机目标跟踪算法[J]. 电光与控制, 2025, 32(6): 31–37. doi: 10.3969/j.issn.1671-637X.2025.06.005.

    LI Huayao, ZHONG Xiaoyong, YANG Zhineng, et al. A lightweight UAV tracking algorithm combining Siamese network with Transformer[J]. Electronics Optics & Control, 2025, 32(6): 31–37. doi: 10.3969/j.issn.1671-637X.2025.06.005.
    [11] 齐咏生, 姜政廷, 刘利强, 等. SiamMT: 基于自适应特征融合机制的可修正RGBT目标跟踪算法[J]. 控制与决策, 2025, 40(4): 1312–1320. doi: 10.13195/j.kzyjc.2024.0205.

    QI Yongsheng, JIANG Zhengting, LIU Liqiang, et al. SiamMT: Amodifiable RGBT target tracking algorithm based on adaptive feature fusion mechanism[J]. Control and Decision, 2025, 40(4): 1312–1320. doi: 10.13195/j.kzyjc.2024.0205.
    [12] SHAN Yunxiao, ZHOU Xiaomei, LIU Shanghua, et al. SiamFPN: A deep learning method for accurate and real-time maritime ship tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(1): 315–325. doi: 10.1109/TCSVT.2020.2978194.
    [13] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944. doi: 10.1109/CVPR.2017.106.
    [14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [15] HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [16] SHEN Zhuoran, ZHANG Mingyuan, ZHAO Haiyu, et al. Efficient attention: Attention with linear complexities[C]. Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 3530–3538. doi: 10.1109/WACV48630.2021.00357.
    [17] JOCHER G, STOKEN A, BOROVEC J, et al. “YOLOv5, ” https://github.com/ultralytics/yolov5, 2021. (查阅网上资料,未找到本条文献信息,请确认).
    [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007. doi: 10.1109/ICCV.2017.324.
    [19] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 658–666. doi: 10.1109/CVPR.2019.00075.
    [20] HUANG Lianghua, ZHAO Xin, and HUANG Kaiqi. GlobalTrack: A simple and strong baseline for long-term tracking[C]. The Thirty-Fourth AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2020: 11037–11044. doi: 10.1609/aaai.v34i07.6758.
    [21] GAO Shenyuan, ZHOU Chunluan, and ZHANG Jun. Generalized relation modeling for transformer tracking[C]. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 18686–18695. doi: 10.1109/CVPR52729.2023.01792.
    [22] YE Botao, CHANG Hong, MA Bingpeng, et al. Joint feature learning and relation modeling for tracking: A one-stream framework[C]. Proceedings of 17th European Conference on Computer Vision – ECCV 2022, Tel Aviv, Israel, 2022: 341–357. doi: 10.1007/978-3-031-20047-2_20.
    [23] GU Fengwei, LU Jun, CAI Chengtao, et al. EANTrack: An efficient attention network for visual tracking[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(4): 5911–5928. doi: 10.1109/TASE.2023.3319676.
    [24] LIU Chang, ZHAO Jie, BO Chunjuan, et al. LGTrack: Exploiting local and global properties for robust visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(9): 8161–8171. doi: 10.1109/TCSVT.2024.3390054.
    [25] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. Proceedings of 15th European Conference on Computer Vision – ECCV, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [26] HUANG Hejun, CHEN Zuguo, ZOU Ying, et al. Channel prior convolutional attention for medical image segmentation[J]. Computers in Biology and Medicine, 2024, 178: 108784. doi: 10.1016/j.compbiomed.2024.108784.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 修回日期:  2025-10-14
  • 网络出版日期:  2025-10-16

目录

    /

    返回文章
    返回