高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁信号特征匹配表征的弱小目标恒虚警检测方法

王子欣 项厚宏 田波 马宏伟 王宇颢 曾小路 王凤玉

王子欣, 项厚宏, 田波, 马宏伟, 王宇颢, 曾小路, 王凤玉. 电磁信号特征匹配表征的弱小目标恒虚警检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT250589
引用本文: 王子欣, 项厚宏, 田波, 马宏伟, 王宇颢, 曾小路, 王凤玉. 电磁信号特征匹配表征的弱小目标恒虚警检测方法[J]. 电子与信息学报. doi: 10.11999/JEIT250589
WANG Zixin, XIANG Houhong, TIAN Bo, MA Hongwei, WANG Yuhao, ZENG Xiaolu, WANG Fengyu. Electromagnetic Signal Feature Matching Characterization for Constant False Alarm Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250589
Citation: WANG Zixin, XIANG Houhong, TIAN Bo, MA Hongwei, WANG Yuhao, ZENG Xiaolu, WANG Fengyu. Electromagnetic Signal Feature Matching Characterization for Constant False Alarm Detection[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250589

电磁信号特征匹配表征的弱小目标恒虚警检测方法

doi: 10.11999/JEIT250589 cstr: 32379.14.JEIT250589
基金项目: 国家自然科学基金(62201189),安徽省重点研究与开发计划项目(2023z04020018),中央高校基本科研业务费专项资金(JZ2024HGTB0228),雷达信号处理全国重点实验室(航天2院23所)基金,西安电子科技大学杭州研究院院士工作站基金项目资助
详细信息
    作者简介:

    王子欣:女,硕士生,研究方向为低慢小目标智能检测

    项厚宏:男,博士,讲师,硕士生导师,研究方向为智能雷达信号处理、阵列信号处理等

    田波:男,硕士,高级工程师,研究方向为预警雷达总体技术

    马宏伟:男,硕士,高级工程师,研究方向为预警雷达总体设计与信号处理

    王宇颢:男,硕士,工程师,研究方向为防空情报雷达

    曾小路:男,博士,副研究员,研究方向为穿墙雷达静止目标成像、智能无线感知与物联网技术

    王凤玉:女,博士,讲师,研究方向为智能信号处理、阵列信号处理等

    通讯作者:

    项厚宏 hhxiang@hfut.edu.cn

  • 中图分类号: TN958

Electromagnetic Signal Feature Matching Characterization for Constant False Alarm Detection

Funds: The National Natural Science Foundation of China(62201189), Key Fundamental Research Program of Anhui Province (2023z04020018), The Fundamental Research Funds for the Central Universities (JZ2024HGTB0228), National Key Laboratory of Radar Signal Processing (Aerospace 2nd Academy of Sciences) Fund, The Open Fund for the Hangzhou Institute of Technology Academician Workstation at Xidian University
  • 摘要: 传统恒虚警(Constant False Alarm Rate, CFAR)检测通过统计信号功率参数设定检测门限,其检测性能受限于信噪比,如何挖掘和利用功率参数之外的信号特征,实现更低信噪比的恒虚警检测是该文的研究重点。该文针对高斯白噪声背景下的弱小目标检测,提出了一种基于信号特征匹配的恒虚警检测方法,分析检测单元回波与理想回波信号的深度特征匹配度,以匹配度参数驱动目标检测,通过统计得到关于匹配度参数的恒虚警检测门限。仿真数据与多个频段雷达实测数据处理结果均表明,相比于传统CFAR检测方法及其他机器学习和深度学习方法而言,该文所提方法具有良好恒虚警特性的同时,表现出更佳的检测性能,等效信噪比改善2~5 dB。
  • 图  1  目标检测方法框图

    图  2  不同窗长下$ {H_0} $空间匹配度参数分布

    图  3  不同信噪比下检测效果对比

    图  4  不同虚警下检测概率曲线

    图  5  失配信噪比下检测概率曲线

    图  6  X波段雷达积累后信噪比变化情况

    图  7  不同方法对X波段实测数据检测效果

    图  8  不同方法检测目标位置点迹

    图  9  S波段雷达实测目标航迹图

    图  10  不同方法对S波段实测数据检测效果

    图  11  不同方法检测目标位置点迹

    表  1  不同滑窗下实际虚警概率及相对误差

    滑窗长度 期望虚警概率
    10–1 10–2 10–3 10–4 10–5
    N=9 1.008×10–1(0.824%) 1.003×10–2(0.293%) 0.998×10–3(0.183%) 0.997×10–4(0.338%) 1.013×10–5(1.351%)
    N=17 0.972×10–1(2.805%) 0.957×10–2(4.298%) 0.962×10–3(3.824%) 0.967×10–4(3.253%) 0.942×10–5(5.822%)
    N=25 1.008×10–1(0.767%) 0.985×10–2(1.518%) 0.982×10–3(1.765%) 0.956×10–4(4.369%) 1.041×10–5(4.167%)
    N=33 1.065×10–1(6.516%) 1.042×10–2(4.195%) 1.017×10–3(1.712%) 0.995×10–4(0.528%) 1.056×10–5(5.634%)
    N=41 1.119×10–1(11.912%) 1.089×10–2(8.935%) 1.065×10–3(6.533%) 1.036×10–4(3.571%) 1.071×10–5(7.143%)
    N=49 1.153×10–1(15.339%) 1.139×10–2(13.850%) 1.085×10–3(8.469%) 1.096×10–4(9.601%) 0.996×10–5(0.362%)
    下载: 导出CSV
  • [1] RICHARDS M A, 邢孟道, 王彤, 李真芳, 等译. 雷达信号处理基础[M]. 北京: 电子工业出版社, 2008: 262.

    RICHARDS M A, XING Mengdao, WANG Tong, LI Zhenfang, et al. translation. Fundamentals of Radar Signal Processing[M]. Beijing: Publishing House of Electronics Industry, 2008: 262.
    [2] 张梦妮, 王祎鸣, 吴勇剑. 基于改进Mask R-CNN的船载地波雷达目标检测方法[J]. 海洋科学进展, 2025, 43(3): 693–705. doi: 10.12362/j.issn.1671-6647.20231226001.

    ZHANG Mengni, WANG Yiming, and WU Yongjian. Target detection method of shipborne surface wave radar based on improved mask R-CNN[J]. Advances in Marine Science, 2025, 43(3): 693–705. doi: 10.12362/j.issn.1671-6647.20231226001.
    [3] 李旭冬, 叶茂, 李涛. 基于卷积神经网络的目标检测研究综述[J]. 计算机应用研究, 2017, 34(10): 2881–2886,2891. doi: 10.3969/j.issn.1001-3695.2017.10.001.

    LI Xudong, YE Mao, and LI Tao. Review of object detection based on convolutional neural networks[J]. Application Research of Computers, 2017, 34(10): 2881–2886,2891. doi: 10.3969/j.issn.1001-3695.2017.10.001.
    [4] BHATTACHARYA T K and HAYKIN S. Neural network-based radar detection for an ocean environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 408–420. doi: 10.1109/7.575874.
    [5] LIU Ningbo, XU Yanan, TIAN Yonghua, et al. Background classification method based on deep learning for intelligent automotive radar target detection[J]. Future Generation Computer Systems, 2019, 94: 524–535. doi: 10.1016/j.future.2018.11.036.
    [6] 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077.

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077.
    [7] 苏宁远, 陈小龙, 关键, 等. 基于深度学习的海上目标一维序列信号目标检测方法[J]. 信号处理, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. One-dimensional sequence signal detection method for marine target based on deep learning[J]. Journal of Signal Processing, 2020, 36(12): 1987–1997. doi: 10.16798/j.issn.1003-0530.2020.12.004.
    [8] 苏宁远, 陈小龙, 陈宝欣, 等. 雷达海上目标双通道卷积神经网络特征融合智能检测方法[J]. 现代雷达, 2019, 41(10): 47–52,57. doi: 10.16592/j.cnki.1004-7859.2019.10.009.

    SU Ningyuan, CHEN Xiaolong, CHEN Baoxin, et al. Dual-channel convolutional neural networks feature fusion method for radar maritime target intelligent detection[J]. Modern Radar, 2019, 41(10): 47–52,57. doi: 10.16592/j.cnki.1004-7859.2019.10.009.
    [9] SHI Yanling, GUO Yaxing, YAO Tingting, et al. Sea-surface small floating target recurrence plots FAC classification based on CNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5115713. doi: 10.1109/TGRS.2022.3192986.
    [10] WANG Jingang and LI Songbin. Maritime radar target detection in sea clutter based on CNN with dual-perspective attention[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3500405. doi: 10.1109/LGRS.2022.3230443.
    [11] QU Qizhe, LIU Weijian, WANG Jiaxin, et al. Enhanced CNN-based small target detection in sea clutter with controllable false alarm[J]. IEEE Sensors Journal, 2023, 23(9): 10193–10205. doi: 10.1109/JSEN.2023.3259953.
    [12] SHI Yanling and CHEN Weisheng. Sea surface target detection using global false alarm controllable adaptive boosting based on correlation features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5103014. doi: 10.1109/TGRS.2023.3265480.
    [13] 汪翔, 汪育苗, 陈星宇, 等. 基于深度学习的多特征融合海面目标检测方法[J]. 雷达学报, 2024, 13(3): 554–564. doi: 10.12000/JR23105.

    WANG Xiang, WANG Yumiao, CHEN Xingyu, et al. Deep learning-based marine target detection method with multiple feature fusion[J]. Journal of Radars, 2024, 13(3): 554–564. doi: 10.12000/JR23105.
    [14] 邱明劼, 张鹏, 汪圣利. 一种基于ResNet的雷达弱小目标检测方法[J]. 无线电工程, 2024, 54(7): 1652–1659. doi: 10.3969/j.issn.1003-3106.2024.07.007.

    QIU Mingjie, ZHANG Peng, and WANG Shengli. A detection method for radar weak targets based on ResNet[J]. Radio Engineering, 2024, 54(7): 1652–1659. doi: 10.3969/j.issn.1003-3106.2024.07.007.
    [15] 项厚宏, 马宏伟, 余海军, 等. 自监督特征相似度表征的恒虚警检测方法[J/OL]. https://link.cnki.net/urlid/11.2422.tn.20250414.1152.008, 2025.

    XIANG Houhong, MA Hongwei, YU Haijun, et al. Self-supervised feature similarity representation for constant false alarm rate detection method[J/OL]. Systems Engineering and Electronics, https://link.cnki.net/urlid/11.2422.tn.20250414.1152.008, 2025.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  12
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-24
  • 修回日期:  2025-09-08
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回