[1] |
徐锐敏, 王欢鹏, 徐跃杭. 射频微系统关键技术进展及展望[J]. 微波学报, 2023, 39(5): 70–78. doi: 10.14183/j.cnki.1005-6122.2013.z1.011.XU Ruimin, WANG Huanpeng, and XU Yuehang. Progress and prospects of key technologies in RF microsystems[J]. Journal of Microwaves, 2023, 39(5): 70–78. doi: 10.14183/j.cnki.1005-6122.2013.z1.011.
|
[2] |
WANG Haoyu, MA Jianshe, YANG Yide, et al. A review of system-in-package technologies: Application and reliability of advanced packaging[J]. Micromachines, 2023, 14(6): 1149. doi: 10.3390/mi14061149.
|
[3] |
CHYAN J Y and YEH J A. Return loss reduction of molded bonding wires by comb capacitors[J]. IEEE Transactions on Advanced Packaging, 2006, 29(1): 98–101. doi: 10.1109/TADVP.2005.848395.
|
[4] |
孔静, 李岩, 高鸿, 等. 微波电路互联用金丝键合界面空间高低温特性演化研究[J]. 宇航材料工艺, 2023, 53(2): 67–73. doi: 10.12044/j.issn.1007-2330.2023.02.011.KONG Jing, LI Yan, GAO Hong, et al. Research on the evolution of gold wire bonding interface used for microwave circuit interconnection in high and low space temperature[J]. Aerospace Materials & Technology, 2023, 53(2): 67–73. doi: 10.12044/j.issn.1007-2330.2023.02.011.
|
[5] |
陈春梅, 伍艺龙, 李慧. LTCC基板装配间隙对微波特性的影响分析[J]. 电子工艺技术, 2017, 38(6): 323–325. doi: 10.14176/j.issn.1001-3474.2017.06.004.CHEN Chunmei, WU Yilong, and LI Hui. Impact of LTCC substrate assembly gap on microwave characteristics[J]. Electronics Process Technology, 2017, 38(6): 323–325. doi: 10.14176/j.issn.1001-3474.2017.06.004.
|
[6] |
洪伟, 陈喆, 周培根, 等. 毫米波太赫兹集成电路与工艺[J]. 微波学报, 2023, 39(5): 1–18. doi: 10.14183/j.cnki.1005-6122.202305001.HONG Wei, CHEN Zhe, ZHOU Peigen, et al. Millimeter wave and terahertz integrated circuits and processes[J]. Journal of Microwaves, 2023, 39(5): 1–18. doi: 10.14183/j.cnki.1005-6122.202305001.
|
[7] |
林昊, 姚常飞. 一种Ka波段多通道收发组件设计[J]. 微波学报, 2023, 39(4): 62–65. doi: 10.14183/j.cnki.1005-6122.202304014.LIN Hao and YAO Changfei. Design of a Ka-band multi-channel T/R module[J]. Journal of Microwaves, 2023, 39(4): 62–65. doi: 10.14183/j.cnki.1005-6122.202304014.
|
[8] |
ZHANG Yifei, SHI Shouyuan, MARTIN R D, et al. Packaging of high-gain multichip module in multilayer LCP substrates at W-band[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(10): 1655–1662. doi: 10.1109/TCPMT.2017.2737550.
|
[9] |
ZHU Haoran, SUN Yufa, and WU Xianliang. Investigation of the capacitance compensation structure for wire-bonding interconnection in multi-chips module[C]. Proceedings of 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium, Haining, China, 2017: 1–3. doi: 10.1109/EDAPS.2017.8277018.
|
[10] |
张红影, 徐金平, 陈墨. 毫米波微带键合金丝宽带匹配互连分析设计[C]. 2009年全国微波毫米波会议论文集(上册). 北京: 电子工业出版社, 2009: 255–257.ZHANG Hongying, XU Jinping, and CHEN Mo. The design and analysis of millimeter-wave microstrip bonding wires for wide-bandwidth matching interconnection[C]. Proceedings of the 2009 National Conference on Microwave and Millimeter Wave (Volume I). Beijing: Publishing House of Electronics Industry, 2009: 255–257. (查阅网上资料, 未找到本条标黄信息, 请确认).
|
[11] |
UMAR M, LAABS M, NEUMANN N, et al. Bondwire model and compensation network for 60 GHz chip-to-PCB interconnects[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(11): 2196–2200. doi: 10.1109/LAWP.2021.3108499.
|
[12] |
罗建. 一种可改善键合丝截止频率的T形匹配电路[J]. 现代信息科技, 2022, 6(2): 78–80. doi: 10.19850/j.cnki.2096-4706.2022.02.020.LUO Jian. A T-shaped matching circuit which can improve the cut-off frequency of bonding wire[J]. Modern Information Technology, 2022, 6(2): 78–80. doi: 10.19850/j.cnki.2096-4706.2022.02.020.
|
[13] |
阮文州, 刘杨, 陈立翔. 一种针对超宽带应用的小尺寸微波阻抗匹配方法[J]. 微波学报, 2016, 32(S2): 508–510.RUAN Wenzhou, LIU Yang, and CHEN Lixiang. A small-scale microwave impedance matching method for ultra-wideband application[J]. Journal of Microwaves, 2016, 32(S2): 508–510.
|
[14] |
王禾, 周健, 戴岚, 等. 基于陶瓷基板微系统T/R组件的焊接技术研究[J]. 电子与封装, 2023, 23(11): 110202. doi: 10.16257/j.cnki.1681-1070.2023.0144.WANG He, ZHOU Jian, DAI Lan, et al. Research on welding technology for micro-system T/R components based on ceramic substrates[J]. Electronics & Packaging, 2023, 23(11): 110202. doi: 10.16257/j.cnki.1681-1070.2023.0144.
|
[15] |
ZHANG Yifei, SHI Shouyuan, MARTIN R D, et al. Packaging of high-gain multichip module in multilayer LCP substrates at W-band[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(10): 1655–1662. doi: 10.1109/TCPMT.2017.2737550. (查阅网上资料, 本条文献和第8条文献重复,请核对).
|
[16] |
ISAPOUR A and KOUKI A. Vertical LTCC integrated rectangular waveguide and transitions for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 868–882. doi: 10.1109/TMTT.2019.2892743.
|
[17] |
YANG Shilin, YU Zhiqiang, and ZHOU Jianyi. A low-loss broadband planar transition from ground coplanar waveguide to substrate-integrated coaxial line[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(11): 1191–1194. doi: 10.1109/LMWC.2021.3079439.
|
[18] |
MOON S and CHAPPELL W J. Novel three-dimensional packaging approaches using magnetically aligned anisotropic conductive adhesive for microwave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(12): 3815–3823. doi: 10.1109/TMTT.2010.2086630.
|
[19] |
BALLESTEROS J A, FERNANDEZ M D, BELENGUER A, et al. Versatile transition for multilayer compact devices in empty substrate integrated waveguide[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 482–484. doi: 10.1109/LMWC.2018.2825653.
|