高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于微波组件的超宽带键合丝射频特性补偿芯片及电路设计

孔伟东 闫鹏伊 路少鹏 王乔楠 邓世雄 林朋 王琮 杨国辉 张狂

孔伟东, 闫鹏伊, 路少鹏, 王乔楠, 邓世雄, 林朋, 王琮, 杨国辉, 张狂. 一种用于微波组件的超宽带键合丝射频特性补偿芯片及电路设计[J]. 电子与信息学报. doi: 10.11999/JEIT250502
引用本文: 孔伟东, 闫鹏伊, 路少鹏, 王乔楠, 邓世雄, 林朋, 王琮, 杨国辉, 张狂. 一种用于微波组件的超宽带键合丝射频特性补偿芯片及电路设计[J]. 电子与信息学报. doi: 10.11999/JEIT250502
KONG Weidong, YAN Pengyi, LU Shaopeng, WANG Qiaonan, DENG Shixiong, LIN Peng, WANG Cong, YANG Guohui, ZHANG Kuang. Ultra-wideband Bonding Wire RF Characteristics Compensation IC and Circuit Design for Microwave Components[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250502
Citation: KONG Weidong, YAN Pengyi, LU Shaopeng, WANG Qiaonan, DENG Shixiong, LIN Peng, WANG Cong, YANG Guohui, ZHANG Kuang. Ultra-wideband Bonding Wire RF Characteristics Compensation IC and Circuit Design for Microwave Components[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250502

一种用于微波组件的超宽带键合丝射频特性补偿芯片及电路设计

doi: 10.11999/JEIT250502 cstr: 32379.14.JEIT250502
基金项目: 国家自然科学基金(U23B2014)
详细信息
    作者简介:

    孔伟东:高级工程师,研究方向为微波模块、组件设计;电磁超表面设计及电磁兼容

    闫鹏伊:博士生,研究方向为微波集成电路与系统

    路少鹏:工程师,研究方向为TR组件、射频芯片

    王乔楠:研究员,研究方向为微波模块、组件设计;滤波器芯片

    邓世雄:高级工程师,研究方向为限幅放大器、电磁防护

    林朋:研究员,研究方向为TR组件、硅基三维异构集成射频前端

    王琮:教授,研究方向为微波毫米波集成电路设计、微波传感芯片与检测技术

    杨国辉:副教授,研究方向为可调超表面、有源超表面、线极化波束可控漏波天线

    张狂:教授,研究方向为超构表面、电磁场与微波、天线的设计与研究

    通讯作者:

    张狂 zhangkuang@hit.edu.cn

  • 中图分类号: TN63

Ultra-wideband Bonding Wire RF Characteristics Compensation IC and Circuit Design for Microwave Components

Funds: The National Natural Science Foundation of China (U23B2014)
  • 摘要: 该文提出一种利用π型电路结构提升键合金丝补偿网络匹配带宽的方法,并设计了π型电路结构的砷化镓芯片,该结构极大提升了微波组件中跨深缝隙键合互联结构传输性能。与传统的50 Ω芯片的仿真结果相比,实现将跨深缝隙互联结构匹配带宽(S11≥15 dB)从20 GHz拓宽到了40 GHz。实测数据表明,该文提出的芯片及电路结构在DC~40 GHz宽频带范围内回波损耗≥17 dB,插入损耗≤0.7 dB,具有优异的射频传输性能。此外,此芯片和电路结构应用场景可拓展到任意单片微波集成电路(MMIC)与电路板互联结构中,应用频率可拓展到W波段的射频芯片键合互联结构。该文提出的芯片及电路互联结构射频性能优异,加工成本低,可靠性高,适用于高可靠微波产品。
  • 图  1  微波组件中的过渡深缝隙

    图  2  传统T型金丝及补偿结构等效电路图及阻抗变换轨迹

    图  3  π型金丝及补偿结构等效电路图及阻抗变换轨迹

    图  4  本文所提键合丝匹配芯片及跨深缝隙键合过渡仿真模型

    图  5  跨深缝隙键合过渡结构仿真结果

    图  6  键合丝射频特性补偿芯片与印制电路板互联结构仿真模型及互联仿真结果

    表  1  不同互连方式的性能比较

    文献工作频率(GHz)回波损耗(dB)插入损耗(dB)跨域深度(mm)
    [16]50∽66> 15< 1.00.22
    [17]DC∽45> 15< 2.50.13
    [18]DC∽15> 10< 6.00.18
    [19]12∽18> 20< 1.01.00
    本文DC∽40> 17< 0.72.09
    下载: 导出CSV
  • [1] 徐锐敏, 王欢鹏, 徐跃杭. 射频微系统关键技术进展及展望[J]. 微波学报, 2023, 39(5): 70–78. doi: 10.14183/j.cnki.1005-6122.2013.z1.011.

    XU Ruimin, WANG Huanpeng, and XU Yuehang. Progress and prospects of key technologies in RF microsystems[J]. Journal of Microwaves, 2023, 39(5): 70–78. doi: 10.14183/j.cnki.1005-6122.2013.z1.011.
    [2] WANG Haoyu, MA Jianshe, YANG Yide, et al. A review of system-in-package technologies: Application and reliability of advanced packaging[J]. Micromachines, 2023, 14(6): 1149. doi: 10.3390/mi14061149.
    [3] CHYAN J Y and YEH J A. Return loss reduction of molded bonding wires by comb capacitors[J]. IEEE Transactions on Advanced Packaging, 2006, 29(1): 98–101. doi: 10.1109/TADVP.2005.848395.
    [4] 孔静, 李岩, 高鸿, 等. 微波电路互联用金丝键合界面空间高低温特性演化研究[J]. 宇航材料工艺, 2023, 53(2): 67–73. doi: 10.12044/j.issn.1007-2330.2023.02.011.

    KONG Jing, LI Yan, GAO Hong, et al. Research on the evolution of gold wire bonding interface used for microwave circuit interconnection in high and low space temperature[J]. Aerospace Materials & Technology, 2023, 53(2): 67–73. doi: 10.12044/j.issn.1007-2330.2023.02.011.
    [5] 陈春梅, 伍艺龙, 李慧. LTCC基板装配间隙对微波特性的影响分析[J]. 电子工艺技术, 2017, 38(6): 323–325. doi: 10.14176/j.issn.1001-3474.2017.06.004.

    CHEN Chunmei, WU Yilong, and LI Hui. Impact of LTCC substrate assembly gap on microwave characteristics[J]. Electronics Process Technology, 2017, 38(6): 323–325. doi: 10.14176/j.issn.1001-3474.2017.06.004.
    [6] 洪伟, 陈喆, 周培根, 等. 毫米波太赫兹集成电路与工艺[J]. 微波学报, 2023, 39(5): 1–18. doi: 10.14183/j.cnki.1005-6122.202305001.

    HONG Wei, CHEN Zhe, ZHOU Peigen, et al. Millimeter wave and terahertz integrated circuits and processes[J]. Journal of Microwaves, 2023, 39(5): 1–18. doi: 10.14183/j.cnki.1005-6122.202305001.
    [7] 林昊, 姚常飞. 一种Ka波段多通道收发组件设计[J]. 微波学报, 2023, 39(4): 62–65. doi: 10.14183/j.cnki.1005-6122.202304014.

    LIN Hao and YAO Changfei. Design of a Ka-band multi-channel T/R module[J]. Journal of Microwaves, 2023, 39(4): 62–65. doi: 10.14183/j.cnki.1005-6122.202304014.
    [8] ZHANG Yifei, SHI Shouyuan, MARTIN R D, et al. Packaging of high-gain multichip module in multilayer LCP substrates at W-band[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(10): 1655–1662. doi: 10.1109/TCPMT.2017.2737550.
    [9] ZHU Haoran, SUN Yufa, and WU Xianliang. Investigation of the capacitance compensation structure for wire-bonding interconnection in multi-chips module[C]. Proceedings of 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium, Haining, China, 2017: 1–3. doi: 10.1109/EDAPS.2017.8277018.
    [10] 张红影, 徐金平, 陈墨. 毫米波微带键合金丝宽带匹配互连分析设计[C]. 2009年全国微波毫米波会议论文集(上册). 北京: 电子工业出版社, 2009: 255–257.

    ZHANG Hongying, XU Jinping, and CHEN Mo. The design and analysis of millimeter-wave microstrip bonding wires for wide-bandwidth matching interconnection[C]. Proceedings of the 2009 National Conference on Microwave and Millimeter Wave (Volume I). Beijing: Publishing House of Electronics Industry, 2009: 255–257. (查阅网上资料, 未找到本条标黄信息, 请确认).
    [11] UMAR M, LAABS M, NEUMANN N, et al. Bondwire model and compensation network for 60 GHz chip-to-PCB interconnects[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(11): 2196–2200. doi: 10.1109/LAWP.2021.3108499.
    [12] 罗建. 一种可改善键合丝截止频率的T形匹配电路[J]. 现代信息科技, 2022, 6(2): 78–80. doi: 10.19850/j.cnki.2096-4706.2022.02.020.

    LUO Jian. A T-shaped matching circuit which can improve the cut-off frequency of bonding wire[J]. Modern Information Technology, 2022, 6(2): 78–80. doi: 10.19850/j.cnki.2096-4706.2022.02.020.
    [13] 阮文州, 刘杨, 陈立翔. 一种针对超宽带应用的小尺寸微波阻抗匹配方法[J]. 微波学报, 2016, 32(S2): 508–510.

    RUAN Wenzhou, LIU Yang, and CHEN Lixiang. A small-scale microwave impedance matching method for ultra-wideband application[J]. Journal of Microwaves, 2016, 32(S2): 508–510.
    [14] 王禾, 周健, 戴岚, 等. 基于陶瓷基板微系统T/R组件的焊接技术研究[J]. 电子与封装, 2023, 23(11): 110202. doi: 10.16257/j.cnki.1681-1070.2023.0144.

    WANG He, ZHOU Jian, DAI Lan, et al. Research on welding technology for micro-system T/R components based on ceramic substrates[J]. Electronics & Packaging, 2023, 23(11): 110202. doi: 10.16257/j.cnki.1681-1070.2023.0144.
    [15] ZHANG Yifei, SHI Shouyuan, MARTIN R D, et al. Packaging of high-gain multichip module in multilayer LCP substrates at W-band[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(10): 1655–1662. doi: 10.1109/TCPMT.2017.2737550. (查阅网上资料, 本条文献和第8条文献重复,请核对).
    [16] ISAPOUR A and KOUKI A. Vertical LTCC integrated rectangular waveguide and transitions for millimeter-wave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(3): 868–882. doi: 10.1109/TMTT.2019.2892743.
    [17] YANG Shilin, YU Zhiqiang, and ZHOU Jianyi. A low-loss broadband planar transition from ground coplanar waveguide to substrate-integrated coaxial line[J]. IEEE Microwave and Wireless Components Letters, 2021, 31(11): 1191–1194. doi: 10.1109/LMWC.2021.3079439.
    [18] MOON S and CHAPPELL W J. Novel three-dimensional packaging approaches using magnetically aligned anisotropic conductive adhesive for microwave applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(12): 3815–3823. doi: 10.1109/TMTT.2010.2086630.
    [19] BALLESTEROS J A, FERNANDEZ M D, BELENGUER A, et al. Versatile transition for multilayer compact devices in empty substrate integrated waveguide[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(6): 482–484. doi: 10.1109/LMWC.2018.2825653.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  13
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-09-12
  • 网络出版日期:  2025-09-17

目录

    /

    返回文章
    返回