高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空中对抗场景下对比学习驱动的弱监督机动识别方法

朱龙俊 袁伟伟 门雪峰 童伟 吴奇

朱龙俊, 袁伟伟, 门雪峰, 童伟, 吴奇. 空中对抗场景下对比学习驱动的弱监督机动识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT250495
引用本文: 朱龙俊, 袁伟伟, 门雪峰, 童伟, 吴奇. 空中对抗场景下对比学习驱动的弱监督机动识别方法[J]. 电子与信息学报. doi: 10.11999/JEIT250495
ZHU Longjun, YUAN Weiwei, MEN Xuefeng, TONG Wei, WU Qi. Weakly Supervised Recognition of Aerial Adversarial Maneuvers via Contrastive Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250495
Citation: ZHU Longjun, YUAN Weiwei, MEN Xuefeng, TONG Wei, WU Qi. Weakly Supervised Recognition of Aerial Adversarial Maneuvers via Contrastive Learning[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250495

空中对抗场景下对比学习驱动的弱监督机动识别方法

doi: 10.11999/JEIT250495 cstr: 32379.14.JEIT250495
基金项目: 国家自然科学基金(T2325018, 62171274),江苏省自然科学基金(BK20240641)
详细信息
    作者简介:

    朱龙俊:女,博士生,副教授,研究方向为模式识别、机器学习和鲁棒控制等

    袁伟伟:女,教授,研究方向为数据挖掘、智能计算及人工智能的航空航天应用等

    门雪峰:男,工程师,研究方向为深度学习、脑认知技术应用

    童伟:男,博士,研究方向为机器人视觉、人机交互、医学图像分析和脑认知

    吴奇:男,教授,研究方向为深度学习、疲劳识别和人机交互等

    通讯作者:

    吴奇 edmondqwu@163.com

  • 中图分类号: TP181.8; TP391.41

Weakly Supervised Recognition of Aerial Adversarial Maneuvers via Contrastive Learning

Funds: The National Natural Science Foundation of China (T2325018, 62171274), Natural Science Foundation of Jiangsu Province (BK20240641)
  • 摘要: 针对空中对抗场景中飞行机动标注数据获取困难、时序特征提取不充分等问题,该文提出一种基于对比学习的弱监督机动识别方法,旨在提升机动识别性能。通过将视觉表征对比学习的简单框架(SimCLR)创新性地扩展至时间序列分析,设计针对时间序列的数据增强策略,构建具有时序不变性的特征空间。进而结合对比学习机制,在特征空间内形成正负样本组的竞争关系,有效抑制伪标签噪声干扰。最后结合微调技术,在DCS World飞行模拟数据上进行实验验证。结果表明,该方法能有效利用时间序列数据潜在信息,在缺乏标注数据情况下展现出良好性能,为空中对抗机动识别及时间序列分析领域提供了新的思路与方法。
  • 图  1  基于对比学习的弱监督机动识别框架

    图  2  2种方案的准确率受微调比例影响对比

    图  3  2种方案的平均准确率比较

    表  1  机动数据集构成

    数据集
    层级
    数据集
    标识
    包含的机动类型
    基础层D1半舵翻滚、俯冲、横滚、盘旋、爬升
    D2半舵翻滚、横滚、急转、爬升、旋降
    D3半舵翻滚、俯冲、爬升、尾冲、旋降
    融合层D4半舵翻滚、俯冲、横滚、急转、盘旋、爬升、旋降
    D5半舵翻滚、俯冲、横滚、盘旋、爬升、尾冲、旋降
    D6半舵翻滚、俯冲、横滚、急转、爬升、尾冲、旋降
    全量层D7半舵翻滚、俯冲、横滚、急转、盘旋、
    爬升、尾冲、旋降
    下载: 导出CSV

    表  2  微调比例划分情况

    场景数据范围(%)间隔(%)总测试点个数
    极低数据场景2,4,6,8,1025
    中低数据场景12,14,16,18,2025
    低数据场景22,24,26,28,3025
    下载: 导出CSV

    表  3  极低数据场景识别准确率

    微调比例(%)D1D2D3D4D5D6D7
    BMVMBMVMBMVMBMVMBMVMBMVMBMVM
    20.3560.5450.3280.2810.5330.4660.4290.5400.3310.3200.4200.4760.3160.327
    40.6750.8280.6040.6250.7300.7420.6270.7450.5530.6250.6050.7550.5570.696
    60.7510.8930.6820.7650.7760.8320.7000.8020.6700.7800.6780.8240.6550.774
    80.8200.9550.7080.8350.8030.8700.7380.8550.6980.8140.6910.8570.6980.849
    100.8300.9580.6940.8160.8050.8320.7510.8590.7260.8670.7100.8670.7070.847
    下载: 导出CSV

    表  5  低数据场景识别准确率

    微调比例(%)D1D2D3D4D5D6D7
    BMVMBMVMBMVMBMVMBMVMBMVMBMVM
    220.8900.9770.7830.8620.8880.9790.7750.8300.7710.9120.7650.9260.7830.916
    240.8830.9790.7810.8590.8890.9990.7980.8550.7530.8970.7610.9150.7720.895
    260.8820.9760.7980.8850.8860.9980.8150.8980.7700.9150.7730.9260.7820.918
    280.8920.9770.7950.9050.8870.9990.8170.9020.7710.9120.7750.9280.7800.918
    300.8950.9790.7910.8610.8700.9770.8160.9150.7720.9150.7680.9280.7890.928
    下载: 导出CSV

    表  4  中低数据场景识别准确率

    微调比例(%)D1D2D3D4D5D6D7
    BMVMBMVMBMVMBMVMBMVMBMVMBMVM
    120.8430.9370.7580.9560.8380.9170.7630.8590.7130.8570.7180.8860.7630.908
    140.8620.9800.7630.8860.8400.9170.7670.8590.7360.8860.7350.9010.7570.861
    160.8670.9800.7750.9090.8670.9810.7680.8310.7550.9010.7550.9300.7700.873
    180.8710.9580.7790.8860.8900.9990.7810.8590.7490.9150.7590.9300.7750.896
    200.8750.9800.8030.9790.8790.9590.7680.8160.7590.9150.7640.9300.7730.896
    下载: 导出CSV

    表  6  不同数据增强策略在各数据集上的识别准确率对比

    Datasets时间压缩缩放排列掩蔽翻转随机组合
    D10.9000.9050.8900.9100.8950.925
    D20.8050.8000.7900.8080.7950.821
    D30.8750.8800.8650.8830.8700.895
    下载: 导出CSV

    表  7  Voting方案与各基线模型的机动识别平均准确率对比

    DatasetsLSTMGRUT-RepXGBoostRocketMLPTimesNetVoting
    D10.9000.9240.9150.8980.8760.9120.8990.925
    D20.8130.8000.8150.6990.7810.7890.8200.821
    D30.8590.8510.8880.7580.8020.8510.8850.895
    D40.7820.7750.7510.7640.7360.7740.8020.828
    D50.7520.7760.7310.8600.7420.7810.7940.829
    D60.7640.7630.7610.8080.6820.7750.8080.863
    D70.7820.7940.7380.8030.7300.7610.7660.834
    下载: 导出CSV
  • [1] TIAN Yonglong, SUN Chen, POOLE B, et al. What makes for good views for contrastive learning?[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 573.
    [2] CHUANG C Y, ROBINSON J, LIN Y C, et al. Debiased contrastive learning[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 735.
    [3] ZHENG Mingkai, WANG Fei, YOU Shan, et al. Weakly supervised contrastive learning[C]. IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10022–10031. doi: 10.1109/ICCV48922.2021.00989.
    [4] KHOSLA P, TETERWAK P, WANG Chen, et al. Supervised contrastive learning[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1567.
    [5] WU Linshan, ZHUANG Jiaxin, and CHEN Hao. VoCo: A simple-yet-effective volume contrastive learning framework for 3D medical image analysis[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 22873–22882. doi: 10.1109/CVPR52733.2024.02158.
    [6] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]. The 37th International Conference on Machine Learning, 2020: 149. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
    [7] KUANG Haofei, ZHU Yi, ZHANG Zhi, et al. Video contrastive learning with global context[C]. IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 3188. doi: 10.1109/ICCVW54120.2021.00358.
    [8] SUNG C, KIM W, AN J, et al. Contextrast: Contextual contrastive learning for semantic segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2024: 3732–3742. doi: 10.1109/CVPR52733.2024.00358.
    [9] WU Zhuofeng, WANG Sinong, GU Jiatao, et al. CLEAR: Contrastive learning for sentence representation[J]. arXiv preprint arXiv: 2012.15466, 2020. doi: 10.48550/arXiv.2012.15466. (查阅网上资料,不确定文献类型及格式是否正确,请确认).
    [10] SPIJKERVET J and BURGOYNE J A. Contrastive learning of musical representations[C]. The 22nd International Society for Music Information Retrieval Conference, 2021: 673–681. (查阅网上资料, 未找到本条文献出版地信息, 请确认).
    [11] 倪世宏, 史忠科, 谢川, 等. 军用战机机动飞行动作识别知识库的建立[J]. 计算机仿真, 2005, 22(4): 23–26. doi: 10.3969/j.issn.1006-9348.2005.04.007.

    NI Shihong, SHI Zhongke, XIE Chuan, et al. Establishment of avion inflight maneuver action recognizing knowledge base[J]. Computer Simulation, 2005, 22(4): 23–26. doi: 10.3969/j.issn.1006-9348.2005.04.007.
    [12] 孟光磊, 陈振, 罗元强. 基于动态贝叶斯网络的机动动作识别方法[J]. 系统仿真学报, 2017, 29(S1): 140–145. doi: 10.16182/j.issn1004731x.joss.2017S1020.

    MENG Guanglei, CHEN Zhen, and LUO Yuanqiang. Maneuvering action identify method based on dynamic Bayesian network[J]. Journal of System Simulation, 2017, 29(S1): 140–145. doi: 10.16182/j.issn1004731x.joss.2017S1020.
    [13] WANG Yongjun, DONG Jiang, LIU Xiaodong, et al. Identification and standardization of maneuvers based upon operational flight data[J]. Chinese Journal of Aeronautics, 2015, 28(1): 133–140. doi: 10.1016/j.cja.2014.12.026.
    [14] LI Xiaokang, ZHU Tianyi, BIAN Zimu, et al. An improved algorithm for flight maneuver recognition and evaluation based on support vector machines[C]. 2024 International Conference on Cyber-Physical Social Intelligence (ICCSI), Doha, Qatar, 2024: 1–6. doi: 10.1109/ICCSI62669.2024.10799254.
    [15] XI Zhifei, LYU Yue, KOU Yingxin, et al. An online ensemble semi-supervised classification framework for air combat target maneuver recognition[J]. Chinese Journal of Aeronautics, 2023, 36(6): 340–360. doi: 10.1016/j.cja.2023.04.020.
    [16] WEI Zhenglei, DING Dali, ZHOU Huan, et al. A flight maneuver recognition method based on multi-strategy affine canonical time warping[J]. Applied Soft Computing, 2020, 95: 106527. doi: 10.1016/j.asoc.2020.106527.
    [17] LU Jing, CHAI Hongjun, and JIA Ruchun. A general framework for flight maneuvers automatic recognition[J]. Mathematics, 2022, 10(7): 1196. doi: 10.3390/math10071196.
    [18] WANG Can, TU Jingqi, YANG Xizhong, et al. Explainable basic-fighter-maneuver decision support scheme for piloting within-visual-range air combat[J]. Journal of Aerospace Information Systems, 2024, 21(6): 500–514. doi: 10.2514/1.I011388.
    [19] LEI Xie, SHILIN D, SHANGQIN T, et al. Beyond visual range maneuver intention recognition based on attention enhanced tuna swarm optimization parallel BiGRU[J]. Complex & Intelligent Systems, 2024, 10(2): 2151–2172. doi: 10.1007/s40747-023-01257-3.
    [20] TIAN Wei, ZHANG Hong, LI Hui, et al. Flight maneuver intelligent recognition based on deep variational autoencoder network[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 21. doi: 10.1186/s13634-022-00850-x.
    [21] LUO Dongsheng, CHENG Wei, WANG Yingheng, et al. Time series contrastive learning with information-aware augmentations[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 4534–4542. doi: 10.1609/aaai.v37i4.25575.
    [22] CHEN Muxi, XU Zhijian, ZENG Ailing, et al. FrAug: Frequency domain augmentation for time series forecasting[J]. arXiv preprint arXiv: 2302.09292, 2023. doi: 10.48550/arXiv.2302.09292. (查阅网上资料,不确定文献类型及格式是否正确,请确认).
    [23] HADSELL R, CHOPRA S, and LECUN Y. Dimensionality reduction by learning an invariant mapping[C]. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), New York, USA, 2006: 1735–1742. doi: 10.1109/CVPR.2006.100.
    [24] SCHROFF F, KALENICHENKO D, and PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 815–823. doi: 10.1109/CVPR.2015.7298682.
    [25] SOHN K. Improved deep metric learning with multi-class n-pair loss objective[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 1857–1865.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  17
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-08-29
  • 网络出版日期:  2025-09-08

目录

    /

    返回文章
    返回