高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高动态场景下双模辅助索引调制的正交线性调频分复用系统

宁晓燕 唐子涵 尹巧灵 王诗涵

宁晓燕, 唐子涵, 尹巧灵, 王诗涵. 高动态场景下双模辅助索引调制的正交线性调频分复用系统[J]. 电子与信息学报. doi: 10.11999/JEIT250475
引用本文: 宁晓燕, 唐子涵, 尹巧灵, 王诗涵. 高动态场景下双模辅助索引调制的正交线性调频分复用系统[J]. 电子与信息学报. doi: 10.11999/JEIT250475
NING Xiaoyan, TANG Zihan, YIN Qiaoling, WANG Shihan. Dual Mode Index Modulation-Aided Orthogonal Chirp Division Multiplexing System in High-Dynamic Scenes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250475
Citation: NING Xiaoyan, TANG Zihan, YIN Qiaoling, WANG Shihan. Dual Mode Index Modulation-Aided Orthogonal Chirp Division Multiplexing System in High-Dynamic Scenes[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250475

高动态场景下双模辅助索引调制的正交线性调频分复用系统

doi: 10.11999/JEIT250475 cstr: 32379.14.JEIT250475
基金项目: 国家自然科学基金(62001139),先进船舶通信与信息技术工业和信息化部重点实验室项目(AMCIT2101-05)
详细信息
    作者简介:

    宁晓燕:女,副教授,研究方向为5G通信物理层新技术、认知通信等

    唐子涵:女,硕士生,研究方向为索引调制

    尹巧灵:女,硕士生,研究方向为通信感知一体化

    王诗涵:女,硕士生,研究方向为抗干扰

    通讯作者:

    唐子涵 13072491189@163.com

  • 中图分类号: TN914.3

Dual Mode Index Modulation-Aided Orthogonal Chirp Division Multiplexing System in High-Dynamic Scenes

Funds: The National Natural Science Foundation of China (62001139), The Key Laboratory of Advanced Marine Communication and Information Technology, Ministry of Industry and Information Technology (AMCIT2101-05)
  • 摘要: 基于索引调制的正交线性调频分复用系统(OCDM-IM)要求部分子载波保持静默状态,这一方面削弱了正交线性调频分复用系统(OCDM)的时频扩展增益,导致OCDM-IM系统在高动态场景下受多普勒频移的影响仍然较为严重;另一方面,静默的子载波不携带传输信息,造成了吞吐量的损失。针对以上问题,该文提出一种新型的双模辅助索引调制的OCDM通信系统架构(DM-OCDM-IM)。该系统在OCDM系统的基础上,引入双模索引映射方案,拓展调制维度,既保留了OCDM系统在高动态场景下时频二维扩展抗干扰能力的核心优势,又实现了低阶星座调制下的高频谱效率。为了降低接收端复杂度,提出利用离散菲涅尔变换(DFnT)的特征分解来简化DM-OCDM-IM系统数字信号处理的接收算法。仿真结果表明,与现有的双模辅助索引调制的OFDM系统(DM-OFDM-IM)相比,所提的DM-OCDM-IM系统具有更强的抗多径衰落和抗多普勒频移的能力;与OCDM-IM系统相比,所提的DM-OCDM-IM系统提高了频谱效率的同时,仍然具有更强的抗衰落能力。
  • 图  1  DM-OCDM-IM系统的发射机模型

    图  2  DM-OCDM-IM系统可行的星座设计示例

    图  3  基于ML检测的DM-OCDM-IM系统的接收机框图

    图  4  基于DFnT特征分解的DM-OCDM-IM解调算法

    图  5  AWGN信道和多径信道下,所提的DM-OCDM-IM系统与现有的DM-OFDM-IM系统的BER性能对比

    图  6  多普勒频移信道下,所提的DM-OCDM-IM系统与DM-OFDM-IM系统的BER性能对比

    图  7  AWGN信道和多径信道下,所提的DM-OCDM-IM系统与OCDM-IM系统的BER性能对比

    图  8  多普勒频移信道下,DM-OCDM-IM系统与OCDM-IM系统的BER性能对比

    表  1  DM-OCDM-IM(4,2,$ {M_{\text{A}}},{M_{\text{B}}} $)系统的索引调制查找表

    索引
    比特
    由星座映射器A调制的
    子载波的索引
    子块符号向量
    [0,0] [1,2] $ {[{\boldsymbol{S}}_{\text{A}}^{(1)},{\boldsymbol{S}}_{\text{A}}^{(2)},{\boldsymbol{S}}_{\text{B}}^{(1)},{\boldsymbol{S}}_{\text{B}}^{(2)}]^{\text{T}}} $
    [0,1] [2,3] $ {[{\boldsymbol{S}}_{\text{B}}^{(1)},{\boldsymbol{S}}_{\text{A}}^{(1)},{\boldsymbol{S}}_{\text{A}}^{(2)},{\boldsymbol{S}}_{\text{B}}^{(2)}]^{\text{T}}} $
    [1,0] [3,4] $ {[{\boldsymbol{S}}_{\text{B}}^{(1)},{\boldsymbol{S}}_{\text{B}}^{(2)},{\boldsymbol{S}}_{\text{A}}^{(1)},{\boldsymbol{S}}_{\text{A}}^{(2)}]^{\text{T}}} $
    [1,1] [1,4] $ {[{\boldsymbol{S}}_{\text{A}}^{(1)},{\boldsymbol{S}}_{\text{B}}^{(1)},{\boldsymbol{S}}_{\text{B}}^{(2)},{\boldsymbol{S}}_{\text{A}}^{(2)}]^{\text{T}}} $
    下载: 导出CSV
  • [1] HUR D, LEE D, OH J, et al. Survey on challenges and solutions of C-V2X: LTE-V2X communication technology[C]. 2023 Fourteenth International Conference on Ubiquitous and Future Networks, Paris, France, 2023: 639–641. doi: 10.1109/ICUFN57995.2023.10201105.
    [2] SAVAUX V. Flexible communication system for 6G based on orthogonal chirp division multiplexing[C]. 2022 1st International Conference on 6G Networking, Paris, France, 2022: 1–5. doi: 10.1109/6GNet54646.2022.9830497.
    [3] RASLAN W, ABDEL-ATTY H M, and EL-DEN B M. Assessing the efficiency of multi-carrier waveforms in next-generation 6G wireless communication systems[C]. 2023 International Telecommunications Conference, Alexandria, Egypt, 2023: 260–265. doi: 10.1109/ITC-Egypt58155.2023.10206046.
    [4] COOPER K B, DENGLER R J, LLOMBART N, et al. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169–182. doi: 10.1109/TTHZ.2011.2159556.
    [5] KIM J H, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577.
    [6] OUYANG Xing and ZHAO Jian. Orthogonal chirp division multiplexing[J]. IEEE Transactions on Communications, 2016, 64(9): 3946–3957. doi: 10.1109/TCOMM.2016.2594792.
    [7] 吕鑫. OCDM-OFDM雷达通信一体化信号设计与研究[D]. [硕士论文], 南京理工大学, 2019.

    LV Xin. Design and research of OCDM-OFDM radar communication integrated signal[D]. [Master dissertation], Nanjing University of Science and Technology, 2019.
    [8] ZHANG Dan, ZHANG Yun, DAI Gao, et al. Research on integrated sensing and communications based on OCDM[C]. 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 2024: 6839–6842. doi: 10.1109/IGARSS53475.2024.10641364.
    [9] WANG Xin, JIANG Zhe, and SHEN Xiaohong. Low complexity equalization of orthogonal chirp division multiplexing in doubly-selective channels[J]. Sensors, 2020, 20(11): 3125. doi: 10.3390/s20113125.
    [10] ZHAN Tao, MA Teng, YU Yang, et al. An iterative channel estimation algorithm based on OMP for OCDM systems[J]. IEEE Communications Letters, 2024, 28(7): 1634–1638. doi: 10.1109/LCOMM.2024.3395015.
    [11] GUO Sidong, WANG Yiyin, and MA Xiaoli. Carrier frequency offset estimation for OCDM with null subchirps[J]. IEEE Signal Processing Letters, 2024, 31: 606–610. doi: 10.1109/LSP.2024.3359968.
    [12] LU Deyu, WANG Yiyin, LIU Lingya, et al. Channel estimation for MIMO-OCDM with Fresnel domain pilots[C]. IEEE International Conference on Communications, Denver, CO, USA, 2024: 3128–3133. doi: 10.1109/ICC51166.2024.10622633.
    [13] HAIF H, ZEGRAR S E, and ARSLAN H. Novel OCDM transceiver design for doubly-dispersive channels[J]. IEEE Transactions on Vehicular Technology, 2024, 73(8): 11237–11248. doi: 10.1109/TVT.2024.3371708.
    [14] LI Shaohua, WANG Fasong, ZHANG Yanbin, et al. Orthogonal chirp division multiplexing assisted dual-function radar communication in IoT networks[J]. IEEE Internet of Things Journal, 2024, 11(13): 23752–23764. doi: 10.1109/JIOT.2024.3386666.
    [15] FENG Shutong, LI Zhouhao, WANG Tengxiao, et al. A novel multiple-input multiple-output OCDM transmission system based on index modulation[C]. 2024 16th International Conference on Wireless Communications and Signal Processing, Hefei, China, 2024: 365–370. doi: 10.1109/WCSP62071.2024.10827132.
    [16] LIANG Zijie, FUKAWA K, and ZHANG Yuyuan. Slotted unsourced random access using massive MIMO over frequency selective channels[J]. IEICE Transactions on Communications, 2025, E108-B(5): 640–655. doi: 10.23919/transcom.2024EBP3087.
    [17] LIU Jiaqi, YANG Ping, QUEK T Q S, et al. Orthogonal chirp division multiplexing with index modulation[J]. IEEE Transactions on Communications, 2024, 72(8): 4577–4590. doi: 10.1109/TCOMM.2024.3370447.
    [18] JIA Zhenyu, ZHANG Rongxin, CHEN Zhong, et al. OCDM with index modulation for autonomous underwater vehicles communication[J]. IEEE Transactions on Intelligent Vehicles, 2025, 10(4): 2765–2780. doi: 10.1109/TIV.2024.3384391.
    [19] YILDIRIM M. Subcarrier-interactive dual-mode OFDM[J]. IEEE Communications Letters, 2023, 27(5): 1472–1476. doi: 10.1109/LCOMM.2023.3248523.
    [20] WANG Yanrui, XIAO Yue, DAN Lilin, et al. On the BER performance of constant envelope OFDM in frequency selective MIMO channels with ML detection[J]. IEEE Wireless Communications Letters, 2023, 12(8): 1354–1358. doi: 10.1109/LWC.2023.3274094.
    [21] WANG Yanrui, CHEN Hao, DAN Lilin, et al. Amplitude modulation for constant envelope OFDM using relay in satellite communications[C]. 2024 IEEE 24th International Conference on Communication Technology, Chengdu, China, 2024: 1879–1883. doi: 10.1109/ICCT62411.2024.10946329.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-27
  • 修回日期:  2025-10-09
  • 网络出版日期:  2025-10-14

目录

    /

    返回文章
    返回