高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数化全息MIMO信道建模及其贝叶斯估计

袁正道 郭亚博 高大伟 郭庆华 黄崇文 廖桂生

袁正道, 郭亚博, 高大伟, 郭庆华, 黄崇文, 廖桂生. 参数化全息MIMO信道建模及其贝叶斯估计[J]. 电子与信息学报. doi: 10.11999/JEIT250436
引用本文: 袁正道, 郭亚博, 高大伟, 郭庆华, 黄崇文, 廖桂生. 参数化全息MIMO信道建模及其贝叶斯估计[J]. 电子与信息学报. doi: 10.11999/JEIT250436
YUAN Zhengdao, GUO Yabo, GAO Dawei, GUO Qinghua, HUANG Chongwen, LIAO Guisheng. Parametric Holographic MIMO Channel Modeling and Its Bayesian Estimation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250436
Citation: YUAN Zhengdao, GUO Yabo, GAO Dawei, GUO Qinghua, HUANG Chongwen, LIAO Guisheng. Parametric Holographic MIMO Channel Modeling and Its Bayesian Estimation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250436

参数化全息MIMO信道建模及其贝叶斯估计

doi: 10.11999/JEIT250436 cstr: 32379.14.JEIT250436
基金项目: 国家自然科学基金(62301394, 62331023, 62394292),河南省科技攻关项目(252102210228),国家重点研发计划(2021YFA1000500, 2023YFB2904804)
详细信息
    作者简介:

    袁正道:男,博士,副教授,研究方向为大规模MIMO、稀疏信道估计、消息传递算法和优化理论等

    郭亚博:男,博士,讲师,研究方向为智能超表面信道建模、信道估计、消息传递估计算法等

    高大伟:男,博士,讲师,研究方向为机器学习、阵列信号处理、通信感知一体化等

    郭庆华:男,博士,副教授,研究方向为雷达、通信等领域的机器学习和信号处理算法

    黄崇文:男,博士,研究员,研究方向为HMIMO、智能超表面、太赫兹通信、深度学习方法

    廖桂生:男,博士,教授,研究方向为自适应信号处理、阵列信号处理、信号检测与估计、智能天线等

  • 中图分类号: TN929.5

Parametric Holographic MIMO Channel Modeling and Its Bayesian Estimation

Funds: The National Natural Science Foundation of China(62301394, 62331023, 62394292), The Science and Technology Research Project of Henan Province(252102210228), China National Key R and D Program (2021YFA1000500, 2023YFB2904804)
  • 摘要: 全息多输入多输出(HMIMO)技术因其高空间复用效率和信道容量被视为6G通信系统的关键技术之一,但电磁传播模型复杂、用户角度随机给电磁信道建模和估计带来较大困难。现有方法依赖简化假设或统计模型,存在模型失配问题,且难以同时解耦信道、位置与角度。针对上述挑战,该文提出一种融合神经网络、凸优化和因子图的混合信道建模与估计方法,该方法首先学习信道与坐标的非线性映射关系,构建参数化信道模型;其次基于欧拉角旋转理论描述用户角度,并将其嵌入因子图实现信道、坐标及角度的全局建模;最后利用消息传递算法完成参数联合解耦与信道估计。仿真结果表明,所提方法的信道估计误差较现有近似方法降低3 dB以上。该研究突破了现有方法对天线平行假设的依赖,为复杂电磁环境下的高精度信道估计与位置感知提供了新的解决方案。
  • 图  1  HMIMO和大规模MIMO区别

    图  2  HMIMO发射和天线结构示意图

    图  3  BP神经网络示意图

    图  4  因式分解式(16)对应因子图

    图  5  不同对比算法的信道估计和坐标估计性能随信噪比变化曲线

    图  6  信道估计和用户位置估计性能随导频长度L的变化曲线

    图  7  信道估计和用户位置估计性能随基站天线数M变化曲线

    图  8  信道估计性能随用户天线数N和基站天线数M变化对比

    表  1  概率分布和对应函数表达式

    概率分布和物理意义 函数表达式 概率分布和物理意义 函数表达式
    似然函数$ p\left( {{{\boldsymbol{Y}}}|{{\boldsymbol{H}}},\gamma } \right) $ $ {f_{\boldsymbol{Y}}}({{\boldsymbol{Y}}},{{\boldsymbol{H}}},\gamma ) = {\text{CN}}({{\boldsymbol{Y}}};{{\boldsymbol{\varPhi}} {\boldsymbol{H}}},{\gamma ^{ - 1}}{\mathbf{I}}) $ 旋转参数化$ {f_{\boldsymbol{A}}}({{\boldsymbol{A}}},{{\boldsymbol{\theta }}}) $ 如式(7)所示
    坐标映射$ p({{\boldsymbol{R}}}|{{\boldsymbol{B}}},{{{\boldsymbol{r}}}^t}) $ $ {f_{\boldsymbol{R}}} = \prod\nolimits_n {{f_{{{\boldsymbol{r}}_n}}} ({{{\boldsymbol{b}}}_n},{{\boldsymbol{r}}}_n^{\text{t}},{{\boldsymbol{{r}}}^{\text{t}}})} = \prod\nolimits_n {\delta ({{{\boldsymbol{r}}}_n} - {{\boldsymbol{b}}}_n^{\text{t}} - {{{\boldsymbol{r}}}^{\text{t}}})} $ 参数化信道$ p({{\boldsymbol{H}}}|{{\boldsymbol{R}}}) $ $ {f_{{{{h}}_{mn}}}} ({{{h}}_{mn}},{{{\boldsymbol{r}}}_n}) = \delta ({{h}}_{mn}^{} - {\boldsymbol{\phi}} _{mn}^{}\exp ({\text{i}}{k_0}{{{r}}_{mn}})) $
    旋转$ p({{\boldsymbol{B}}}|{{\boldsymbol{A}}}({{\boldsymbol{\theta}} })) $ $ {f_{\boldsymbol{B}}} = \prod\nolimits_n {{f_{{{\boldsymbol{b}}_n}}}({{{\boldsymbol{b}}}_n},{{\boldsymbol{A}}}(\theta ))} = \prod\nolimits_n {\delta ({{{\boldsymbol{b}}}_n} - {{\boldsymbol{A}}}{{{\bar b}}_n})} $ 噪声先验$ p(\gamma ) $ $ {f_\gamma } = 1/\gamma $
    下载: 导出CSV

    1  基于消息传递的HMIMO信道估计算法

     输入:观测$ {{\boldsymbol{Y}}} $,导频$ {{\boldsymbol{S}}} $;输出:用户坐标$ {{\hat{\boldsymbol{ r}}}^{\mathrm{t}}} = {({\hat x^{\text{t}}},{\hat y^{\text{t}}},{\hat z^{\text{t}}})^{\text{T}}} $,信道$ {\hat {\boldsymbol{H}}} $。
     (1) 初始化噪声精度$ \hat \gamma $、偏置矩阵矩阵$ {\hat {\boldsymbol{B}} = \bar {\boldsymbol{B}}} $, $ {{{\boldsymbol{S}}}_{\boldsymbol{H}}}{\text{ = }}{{{{\textit{0}}}}_{N \times M}} $, $ {\hat {\boldsymbol{H}}}{\text{ = }}{{{{\textit{0}}}}_{N \times M}} $和$ {{\boldsymbol{V}}_{\boldsymbol{H}}} = {{{{\textit{1}}}}_{N \times M}} $。
     (2) For iter=1:T
     (3)  $ {{\boldsymbol{V}}_{\boldsymbol P}} = |{{\boldsymbol{\varPhi}} }{|^2}{{\boldsymbol{V}}_H} $和$ {{\boldsymbol{P}}} = {{\boldsymbol{\varPhi}} \hat {\boldsymbol{H}}} - {{\boldsymbol{V}}_{\boldsymbol P}} \cdot {{{\boldsymbol{S}}}_{\boldsymbol{H}}} $,
     (4)  $ {{\boldsymbol{V}}_{\boldsymbol Z}} = {{\boldsymbol{V}}_{\boldsymbol P}}/(\hat \gamma {{\boldsymbol{V}}_{\boldsymbol P}} + 1) $和$ {{\boldsymbol{Z}}} = (\hat \gamma {{\boldsymbol{Y}}} + {{\boldsymbol{P}}}./{{\boldsymbol{V}}_{\boldsymbol P}}) \cdot {{\boldsymbol{V}}_{\boldsymbol Z}} $,
     (5)  $ \widehat{\gamma }={M}\times {L}/\left(\Vert \boldsymbol{Y}-\boldsymbol{Z}{\Vert }^{2}+\Vert {\boldsymbol{V}}_{{\boldsymbol{Z}}}\Vert \right) $,
     (6)  $ {{\boldsymbol{V}}_{{\boldsymbol{{S}}_{\boldsymbol{H}}}}} = 1/({{\boldsymbol{V}}_{\boldsymbol P}} + {\hat \gamma ^{ - 1}}) $和$ {{{\boldsymbol{S}}}_{\boldsymbol{H}}} = {{\boldsymbol{V}}_{{{\boldsymbol{S}}_{\boldsymbol{H}}}}} \cdot ({{\boldsymbol{Y}}} - {{\boldsymbol{P}}}) $,
     (7)  $ {{\boldsymbol{V}}_{{{\boldsymbol{Q}}_{\boldsymbol{H}}}}} = 1/(|{{{\boldsymbol{\varPhi}} }^{\text{H}}}{|^2}{{\boldsymbol{V}}_{{{\boldsymbol{S}}_{\boldsymbol{H}}}}}) $和$ {{{\boldsymbol{Q}}}_{\boldsymbol{H}}} = {\hat {\boldsymbol{H}}} + {{\boldsymbol{V}}_{{{\boldsymbol{Q}}_{\boldsymbol{H}}}}} \cdot ({{{\boldsymbol{\varPhi}} }^{\text{H}}}{{{\boldsymbol{S}}}_{\boldsymbol{H}}}) $
     (8)  利用式(19)计算$ {f_{{h_{mn}}}} $到$ x_n^{\rm t} $消息$ {m_{{f_{{h_{mn}}}} \to x_n^{\rm t}}}(x_n^{\rm t}),\forall m,n $,
     (9)  利用式(20)和式(21)分别计算消息$ {m_{x_n^{\rm t} \to {f_{x_n^{\rm t}}}}}(x_n^{\rm t}),\forall n $和$ {m_{{f_{x_n^{\rm t}}} \to {x^{\rm t}}}}({x^{\rm t}}),\forall n $,
     (10) 利用式(22)和式(23)分别计算$ {x^{\rm t}} $的置信$ b({x^{\rm t}}) $和消息$ {m_{{x^{\rm t}} \to {f_{x_n^{\rm t}}}}}({x^{\rm t}}) $,
     (11) 利用式(24)和式(25)分别计算消息$ {m_{{f_{x_n^{\rm t}}} \to x_n^{\rm t}}}(x_n^{\rm t}),\forall n $和置信$ b(x_n^{\rm t}),\forall n $,
     (12) 利用式(26)和式(27)分别计算消息$ {m_{x_n^{\rm t} \to {f_{{h_{mn}}}}}}(x_n^{\rm t}) $和$ {m_{{f_{{h_{mn}}}} \to {h_{mn}}}}({h_{mn}}),\forall m,n $,
     (13) 利用式(28)计算$ {h_{mn}} $的置信$ b({h_{mn}}),\forall m,n $,利用(29)堆叠$ b({h_{mn}}) $,得到$ {\hat {\boldsymbol{H}}} $和$ {{\boldsymbol{V}}_{\boldsymbol{H}}} $,
     (14) 利用式(30)计算欧拉角$ {{\hat {\boldsymbol{\theta}} }^{{\text{iter}} + 1}} $,更新$ {{\boldsymbol{A}}}({{\boldsymbol{\theta}} }) $,$ {\hat {\boldsymbol{B}}} = {({{\hat {\boldsymbol{b}}}_1},{{\hat {\boldsymbol{b}}}_2}, \cdots ,{{\hat {\boldsymbol{b}}}_N})^{\text{T}}} $。
     End For
    下载: 导出CSV
  • [1] GONG Tierui, GAVRIILIDIS P, JI Ran, et al. Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions[J]. IEEE Communications Surveys & Tutorials, 2024, 26(1): 196–257. doi: 10.1109/COMST.2023.3309529.
    [2] 陈晓明, 魏建川, 黄崇文. 面向6G无线网络的全息多输入多输出技术综述[J]. 电子与信息学报, 2024, 46(5): 1703–1715. doi: 10.11999/JEIT231140.

    CHEN Xiaoming, WEI Jianchuan, and HUANG Chongwen. Overview of holographic multiple-input multiple-output technology for 6G wireless networks[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1703–1715. doi: 10.11999/JEIT231140.
    [3] ZHU Xiaolong, ZHANG Yanming, TANG Zhenzhou, et al. Coupling-induced capacity analysis of holographic MIMO communication system[C]. 2024 3rd International Conference on Electronics and Information Technology (EIT), Chengdu, China, 2024: 384–388. doi: 10.1109/EIT63098.2024.10762024.
    [4] WEI Li, HUANG Chongwen, ALEXANDROPOULOS G C, et al. Tri-polarized holographic MIMO surfaces for near-field communications: Channel modeling and precoding design[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8828–8842. doi: 10.1109/TWC.2023.3266298.
    [5] D’AMICO A A, TORRES A D J, SANGUINETTI L, et al. Cramér–Rao bounds for holographic positioning[J]. IEEE Transactions on Signal Processing, 2022, 70: 5518–5532. doi: 10.1109/TSP.2022.3222102.
    [6] 黄崇文, 季然, 魏丽, 等. 面向全息MIMO 6G通信的电磁信道建模理论与方法[J]. 电子与信息学报, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.

    HUANG Chongwen, JI Ran, WEI Li, et al. Electromagnetic channel modeling theory and approaches for holographic MIMO wireless communications[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1940–1950. doi: 10.11999/JEIT231219.
    [7] ZHANG Haobo, ZHANG Hongliang, DI Boya, et al. Holographic integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2114–2130. doi: 10.1109/JSAC.2022.3155548.
    [8] DEMIR Ö T, BJÖRNSON E, and SANGUINETTI L. Channel modeling and channel estimation for holographic massive MIMO with planar arrays[J]. IEEE Wireless Communications Letters, 2022, 11(5): 997–1001. doi: 10.1109/LWC.2022.3152600.
    [9] D’AMICO A A, BACCI G, and SANGUINETTI L. DFT-based channel estimation for holographic MIMO[C]. 2023 57th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2023: 353–357. doi: 10.1109/IEEECONF59524.2023.10477065.
    [10] CHEN Yuanbin, WANG Ying, WANG Zhaocheng, et al. Angular-distance based channel estimation for holographic MIMO[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(6): 1684–1702. doi: 10.1109/JSAC.2024.3389116.
    [11] GHERMEZCHESHMEH M and ZLATANOV N. Parametric channel estimation for LoS dominated holographic massive MIMO systems[J]. IEEE Access, 2023, 11: 44711–44724. doi: 10.1109/ACCESS.2023.3273602.
    [12] YUAN S S A, HE Zi, CHEN Xiaoming, et al. Electromagnetic effective degree of freedom of an MIMO system in free space[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(3): 446–450. doi: 10.1109/LAWP.2021.3135018.
    [13] GONG Tierui, WEI Li, HUANG Chongwen, et al. Holographic MIMO communications with arbitrary surface placements: Near-field LoS channel model and capacity limit[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(6): 1549–1566. doi: 10.1109/JSAC.2024.3389126.
    [14] CHEN Ang, CHEN Li, CHEN Yunfei, et al. Near-field positioning and attitude sensing based on electromagnetic propagation modeling[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(9): 2179–2195. doi: 10.1109/JSAC.2024.3413981.
    [15] GUO Shuaishuai, YE Jia, QU Kaiqian, et al. Green holographic MIMO communications with a few transmit radio frequency chains[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(1): 90–102. doi: 10.1109/TGCN.2023.3318986.
    [16] AN Jiancheng, YUEN C, HUANG Chongwen, et al. A tutorial on holographic MIMO communications-Part I: Channel modeling and channel estimation[J]. IEEE Communications Letters, 2023, 27(7): 1664–1668. doi: 10.1109/LCOMM.2023.3278683.
    [17] YUAN Zhengdao, GUO Yabo, GAO Dawei, et al. Neural network-assisted hybrid model based message passing for parametric holographic MIMO near field channel estimation[J]. IEEE Transactions on Wireless Communications, 2025, 24(7): 6211–6224. doi: 10.1109/TWC.2025.3552492.
    [18] GUO Qinghua and XI Jiangtao. Approximate message passing with unitary transformation[EB/OL]. https://arxiv.org/abs/1504.04799, 2015.
    [19] YUAN Zhengdao, GUO Qinghua, and LUO Man. Approximate message passing with unitary transformation for robust bilinear recovery[J]. IEEE Transactions on Signal Processing, 2021, 69: 617–630. doi: 10.1109/TSP.2020.3044847.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  66
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-08-31
  • 网络出版日期:  2025-09-08

目录

    /

    返回文章
    返回