高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多涡卷保守混沌系统的构建及在图像加密中的应用

安新磊 李治甫 薛睿 熊丽 张莉

安新磊, 李治甫, 薛睿, 熊丽, 张莉. 多涡卷保守混沌系统的构建及在图像加密中的应用[J]. 电子与信息学报. doi: 10.11999/JEIT250432
引用本文: 安新磊, 李治甫, 薛睿, 熊丽, 张莉. 多涡卷保守混沌系统的构建及在图像加密中的应用[J]. 电子与信息学报. doi: 10.11999/JEIT250432
AN Xinlei, LI Zhifu, XUE Rui, XIONG Li, ZHANG Li. Construction of Multi-Scroll Conservative Chaotic System and Its Application in Image Encryption[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250432
Citation: AN Xinlei, LI Zhifu, XUE Rui, XIONG Li, ZHANG Li. Construction of Multi-Scroll Conservative Chaotic System and Its Application in Image Encryption[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250432

多涡卷保守混沌系统的构建及在图像加密中的应用

doi: 10.11999/JEIT250432 cstr: 32379.14.JEIT250432
基金项目: 国家自然科学基金(62461022),甘肃省自然科学基金(23JRRA861, 24JRRA291),甘肃省重点研发计划-工业类项目资助(24YFGA040),甘肃省高校教师创新基金项目(2025A-234),甘肃省基础研究创新群体(25JRRA805)
详细信息
    作者简介:

    安新磊:男,教授,研究方向为微分方程动力学及其应用、视频及图像加密和人工智能

    李治甫:男,研究生,研究方向为视频及图像加密和人工智能

    薛睿:女,研究生,研究方向为视频及图像加密和人工智能

    熊丽:女,教授,研究方向为非线性电路与系统及混沌保密通信

    张莉:女,副教授,研究方向为视频及图像加密和人工智能

    通讯作者:

    安新磊 anxin1983@163.com

  • 中图分类号: TP309.7; TN918.91

Construction of Multi-Scroll Conservative Chaotic System and Its Application in Image Encryption

Funds: The National Natural Science Foundation of China (62461022), The Natural Science Foundation of Gansu (23JRRA861, 24JRRA291), Gansu Provincial Key Research and Development Project (24YFGA040), Innovation Fund Project for University Teachers in Gansu Province (2025A-234), The Foundation for Innovative Fundamental Research Group Project of Gansu Province (G25JRRA805)
  • 摘要: 鉴于当前保守混沌系统中多涡卷等复杂动力学行为的研究尚不充分,该文构建了五维保守超混沌系统,通过哈密顿能量函数的调控实现多涡卷保守混沌流的可控生成,进而探究其在图像加密领域的应用。基于哈密顿能量函数的驻点分析,该文揭示了涡卷结构的形成机制:系统运动轨迹沿哈密顿能量等值面演化,增加哈密顿能量函数的驻点可诱导多方向涡卷保守混沌流的形成。复杂度分析结果进一步验证了多涡卷保守混沌系统具有显著提升的谱熵复杂度。基于上述研究,该文设计了一种融合人脸检测技术的图像加密算法,实现针对人脸区域的信息加密。仿真结果表明该算法具备良好的安全性能。
  • 图  1  式(1)系统在三维空间中的相轨迹图

    图  2  保守混沌流 (红色表示极小值点,黄色表示鞍点)

    图  3  哈密顿能量等值面

    图  4  Lyapunov指数谱

    图  5  不同初值下的相轨迹

    图  6  SE复杂度分析

    图  7  图像的人脸检测结果

    图  8  加密算法流程图

    图  9  图像加密与解密测试结果

    图  10  不同密钥的解密结果

    图  11  直方图分析结果

    图  12  相关性分析结果

    图  13  噪声测试

    表  1  密钥空间对比结果

    算法本文文献 [3]文献[22]文献[23]
    密钥空间$ > {2^{498}}$${2^{478}}$${2^{390}}$${2^{249}}$
    下载: 导出CSV

    表  2  不同通道的相关系数计算结果

    图像 方向 明文图像 密文图像
    R G B R G B
    图像01 水平 0.9914 0.9898 0.9888 0.0002 0.0018 0.0021
    垂直 0.9934 0.9920 0.9914 0.0032 0.0012 0.0001
    对角 0.9855 0.9827 0.9812 0.0018 0.0014 0.0034
    图像02 水平 0.9953 0.9897 0.9801 0.0003 0.0023 0.0005
    垂直 0.9922 0.9834 0.9692 0.0006 0.0040 0.0014
    对角 0.9886 0.9760 0.9552 0.0009 0.0011 0.0006
    图像03 水平 0.9793 0.9869 0.9888 0.0005 0.0028 0.0037
    垂直 0.9774 0.9840 0.9869 0.0015 0.0030 0.0017
    对角 0.9632 0.9746 0.9790 0.0038 0.0003 0.0012
    下载: 导出CSV

    表  3  密文图像相关系数比较结果

    算法 水平 垂直 对角 平均值
    本文 0.0025 0.0003 0.0014 0.0014
    文献[2] 0.0029 0.0026 0.0031 0.0029
    文献[24] 0.0066 0.0026 0.0075 0.0056
    文献[27] 0.0105 0.0052 0.0023 0.0045
    下载: 导出CSV

    表  4  信息熵计算结果

    图像 明文图像 密文图像
    R G B R G B
    图像01 7.6223 7.4306 7.4413 7.9977 7.9982 7.9980
    图像02 6.4791 6.0049 5.9409 7.9993 7.9992 7.9993
    图像03 7.6081 7.5927 7.6069 7.9989 7.9992 7.9992
    下载: 导出CSV

    表  5  密文图像信息熵比较结果

    算法本文文献[2]文献[24]文献[25]
    信息熵值7.99747.99727.99727.9969
    下载: 导出CSV

    表  6  NPCR和UACI 测试结果

    图像NPCR(%)UACI(%)
    RGB平均值RGB平均值
    图像0199.610999.601299.614799.608933.450233.497833.427133.4584
    图像0299.620199.597299.602899.606733.497533.475633.487233.4867
    图像0399.611799.593299.628799.611233.426033.496633.431333.4513
    下载: 导出CSV

    表  7  密文图像NPCR和UACI 比较结果

    算法本文文献[6]文献[16]文献[26]
    NPCR(%)99.596899.628799.590099.5500
    UACI(%)33.452433.451233.490033.0200
    下载: 导出CSV
  • [1] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
    [2] LIU Siyang, AN Xinlei, WANG Yue, et al. Design of a new multi-wing chaotic system and its application in color image encryption[J]. Optik, 2023, 290: 171334. doi: 10.1016/j.ijleo.2023.171334.
    [3] ZHOU Nanrun, HU Longlong, HUANG Zhiwen, et al. Novel multiple color images encryption and decryption scheme based on a bit-level extension algorithm[J]. Expert Systems with Applications, 2024, 238: 122052. doi: 10.1016/j.eswa.2023.122052.
    [4] DENG Quanli, WANG Chunhua, YANG Gang, et al. Discrete memristive delay feedback rulkov neuron model: Chaotic dynamics, hardware implementation, and application in secure communication[J]. IEEE Internet of Things Journal, 2025, 12(13): 25559–25567. doi: 10.1109/JIOT.2025.3558963.
    [5] DENG Quanli, WANG Chunhua, SUN Yichuang, et al. Delay difference feedback memristive map: Dynamics, hardware implementation, and application in path planning[J/OL]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2025. doi: 10.1109/tcsi.2025.3571961.
    [6] GAO Xinyu, MOU Jun, BANERJEE S, et al. Color-gray multi-image hybrid compression–encryption scheme based on BP neural network and knight tour[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 5037–5047. doi: 10.1109/tcyb.2023.3267785.
    [7] ZHOU Shuang, QIU Yuyu, QI Guoyuan, et al. A new conservative chaotic system and its application in image encryption[J]. Chaos, Solitons & Fractals, 2023, 175: 113909. doi: 10.1016/j.chaos.2023.113909.
    [8] LIU Xilin, TONG Xiaojun, ZHANG Miao, et al. A highly secure image encryption algorithm based on conservative hyperchaotic system and dynamic biogenetic gene algorithms[J]. Chaos, Solitons & Fractals, 2023, 171: 113450. doi: 10.1016/j.chaos.2023.113450.
    [9] HÉNON M and HEILES C. The applicability of the third integral of motion: Some numerical experiments[J]. The Astronomical Journal, 1964, 69(1): 73–79. doi: 10.1086/109234.
    [10] SPROTT J C. Some simple chaotic flows[J]. Physical Review E, 1994, 50(2): R647–R650. doi: 10.1103/physreve.50.r647.
    [11] 仓诗建. 基于哈密顿能量函数的混沌系统构造与动力学分析[D]. [博士论文], 天津大学, 2018. doi: 10.27356/d.cnki.gtjdu.2018.000273.

    CANG Shijian. Construction and dynamics analysis of chaotic systems using Hamiltonian method[D]. [Ph. D. dissertation], Tianjin University, 2018. doi: 10.27356/d.cnki.gtjdu.2018.000273.
    [12] DONG Enzeng, YUAN Mingfeng, DU Shengzhi, et al. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator[J]. Applied Mathematical Modelling, 2019, 73: 40–71. doi: 10.1016/j.apm.2019.03.037.
    [13] QI Guoyuan, HU Jianbing, and WANG Ze. Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos[J]. Applied Mathematical Modelling, 2020, 78: 350–365. doi: 10.1016/j.apm.2019.08.023.
    [14] JI’E Musha, YAN Dengwei, SUN Shuqi, et al. A simple method for constructing a family of Hamiltonian conservative chaotic systems[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(8): 3328–3338. doi: 10.1109/tcsi.2022.3172313.
    [15] DENG Quanli, WANG Chunhua, SUN Yichuang, et al. Discrete memristive conservative chaotic map: Dynamics, hardware implementation, and application in secure communication[J]. IEEE Transactions on Cybernetics, 2025, 55(8): 3926–3934. doi: 10.1109/TCYB.2025.3565333.
    [16] 刘思洋, 安新磊, 施倩倩, 等. 一类多涡卷Chua系统及其在图像加密中的应用[J]. 复杂系统与复杂性科学, 2024, 21(3): 85–92. doi: 10.13306/j.1672-3813.2024.03.012.

    LIU Siyang, AN Xinlei, SHI Qianqian, et al. A multi-scroll Chua system and its application in image encryption[J]. Complex Systems and Complexity Science, 2024, 21(3): 85–92. doi: 10.13306/j.1672-3813.2024.03.012.
    [17] ZHANG Jie, ZUO Jiangang, WANG Meng, et al. Design and application of multiscroll chaotic attractors based on a novel multi-segmented memristor[J]. Chaos, Solitons & Fractals, 2024, 181: 114676. doi: 10.1016/j.chaos.2024.114676.
    [18] YU Guofeng, FAN Chunlei, XI Jiale, et al. Design and FPGA implementation of nested grid multi-scroll chaotic system[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(8): 102186. doi: 10.1016/j.jksuci.2024.102186.
    [19] ZHANG Lishuang, LI Zhijun, and PENG Yuexi. A hidden grid multi-scroll chaotic system coined with two multi-stable memristors[J]. Chaos, Solitons & Fractals, 2024, 185: 115109. doi: 10.1016/j.chaos.2024.115109.
    [20] DING Pengfei, ZHU Jingge, and ZHANG Juan. A four-dimensional no-equilibrium chaotic system with multi-scroll chaotic hidden attractors and its application in image encryption[J]. Physica Scripta, 2024, 99(10): 105211. doi: 10.1088/1402-4896/ad7237.
    [21] 吉俄木沙. 保守混沌系统的复杂动力学研究与电路实现[D]. [博士论文], 西南大学, 2024. doi: 10.27684/d.cnki.gxndx.2024.000011.

    JI’E Musha. Complex dynamics research and circuit implementation of conservative chaotic systems[D]. [Ph. D. dissertation], Southwest University, 2024. doi: 10.27684/d.cnki.gxndx.2024.000011.
    [22] DEMIRTAŞ M. A novel multiple grayscale image encryption method based on 3D bit-scrambling and diffusion[J]. Optik, 2022, 266: 169624. doi: 10.1016/j.ijleo.2022.169624.
    [23] ZHANG Chenjun, FAN Haiju, ZHANG Mingzhu, et al. Plaintext-related image encryption scheme without additional plaintext based on 2DCS[J]. Optik, 2023, 272: 170312. doi: 10.1016/j.ijleo.2022.170312.
    [24] WANG Xingyuan, CHEN Xuan, FENG Sijia, et al. Color image encryption scheme combining cross-plane Zigzag scrambling and pseudo-random combination RGB component diffusion[J]. Optik, 2022, 269: 169933. doi: 10.1016/j.ijleo.2022.169933.
    [25] WU Xin, SHI Hang, JI’E Musha, et al. A novel image compression and encryption scheme based on conservative chaotic system and DNA method[J]. Chaos, Solitons & Fractals, 2023, 172: 113492. doi: 10.1016/j.chaos.2023.113492.
    [26] LONG Bofeng, CHEN Zhong, LIU Tongzhe, et al. A novel medical image encryption scheme based on deep learning feature encoding and decoding[J]. IEEE Access, 2024, 12: 38382–38398. doi: 10.1109/ACCESS.2024.3371888.
    [27] KUMAR K, ROY S, RAWAT U, et al. IEHC: An efficient image encryption technique using hybrid chaotic map[J]. Chaos, Solitons & Fractals, 2022, 158: 111994. doi: 10.1016/j.chaos.2022.111994.
    [28] HOSNY K M, ZAKI M A, HAMZA H M, et al. Privacy protection in surveillance videos using block scrambling-based encryption and DCNN-based face detection[J]. IEEE Access, 2022, 10: 106750–106769. doi: 10.1109/access.2022.3211657.
    [29] GAO Suo, WU Rui, WANG Xingyuan, et al. EFR-CSTP: Encryption for face recognition based on the chaos and semi-tensor product theory[J]. Information Sciences, 2023, 621: 766–781. doi: 10.1016/j.ins.2022.11.121.
    [30] ROTHE R, TIMOFTE R, and VAN GOOL L. Deep expectation of real and apparent age from a single image without facial landmarks[J]. International Journal of Computer Vision, 2018, 126(2/4): 144–157. doi: 10.1007/s11263-016-0940-3.
  • 加载中
图(13) / 表(7)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-19
  • 修回日期:  2025-09-28
  • 网络出版日期:  2025-10-11

目录

    /

    返回文章
    返回