高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电作动器的准零刚度混合系统隔振设计

杨柳 赵海洋 赵坤 程佳佳 李东洁

杨柳, 赵海洋, 赵坤, 程佳佳, 李东洁. 基于压电作动器的准零刚度混合系统隔振设计[J]. 电子与信息学报. doi: 10.11999/JEIT250310
引用本文: 杨柳, 赵海洋, 赵坤, 程佳佳, 李东洁. 基于压电作动器的准零刚度混合系统隔振设计[J]. 电子与信息学报. doi: 10.11999/JEIT250310
YANG Liu, ZHAO Haiyang, ZHAO Kun, CHENG Jiajia, LI Dongjie. Hybrid Vibration Isolation Design Based on Piezoelectric Actuator and Quasi-zero Stiffness System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250310
Citation: YANG Liu, ZHAO Haiyang, ZHAO Kun, CHENG Jiajia, LI Dongjie. Hybrid Vibration Isolation Design Based on Piezoelectric Actuator and Quasi-zero Stiffness System[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250310

基于压电作动器的准零刚度混合系统隔振设计

doi: 10.11999/JEIT250310 cstr: 32379.14.JEIT250310
基金项目: 国家自然科学基金(62203146),黑龙江省自然科学基金(PL2024F013),黑龙江省重点研发计划(JD2023SJ18)
详细信息
    作者简介:

    杨柳:女,教授,博导,研究方向为纳米驱动定位、微振动控制、智能机器人

    赵海洋:男,硕士生,研究方向为振动控制

    赵坤:男,硕士生,研究方向为微夹持定位

    程佳佳:男,硕士生,研究方向为跨介质主动隔振

    李东洁:女,教授,博导,模式识别与智能系统、机器视觉与信息处理、机器人与智能控制

    通讯作者:

    杨柳 yangliuheu@gmail.com

  • 中图分类号: TP273; O328

Hybrid Vibration Isolation Design Based on Piezoelectric Actuator and Quasi-zero Stiffness System

Funds: The National Natural Science Foundation of China (62203146), The Natural Science Foundation of Heilongjiang Province(PL2024F013), Heilongjiang Province Key Research and Development Program(JD2023SJ18)
  • 摘要: 低频振动对于精密仪器有着不容忽视的危害,通过弹簧的特殊排列可以实现近零刚度的非线性力学特性,不仅能够显著提高低频隔振效果,而且对于高频率的振动也有一定的隔离效果。然而,基于准零刚度的纯被动系统在动态响应上存在局限性,对振幅的依赖较大。因此,该文提出一种压电作动器的准零刚度混合主被动隔振系统,通过主动控制调节,从而增强混合系统整体的动态性能。首先,搭建基于压电作动器的准零刚度混合系统,由线性弹簧组成的准零刚度装置作为被动隔振装置,压电作动器作为主动隔振装置;其次,提出了一种改进的Bouc-Wen(B-W)模型,通过逆模型对其迟滞非线性进行补偿,对隔振对象施加精准的主动控制;最后,建立系统的动力学方程,对外界振动采用带Luenberger的滑模观测器的自适应滑模控制,提高系统的隔振性能。通过隔振控制实验验证,相比于单一被动隔振装置隔振效果提高35%左右。
  • 图  1  准零刚度模型

    图  2  Matlab曲线

    图  3  实验装置

    图  4  扫频与共振频率处的隔振效果

    图  5  迟滞辨识

    图  6  误差曲线

    图  7  逆补偿结构框图

    图  8  补偿结果

    图  9  实际模型与物理模型

    图  11  控制结构图

    图  10  跟踪效果图

    图  12  误差结果图

    图  13  主被动隔振效果图

    表  1  辨识结果

    参数$k$$\alpha $$\beta $$\gamma $$p$$b$
    -0.06600.00050.01270.00160.00011.9788
    下载: 导出CSV

    表  2  辨识结果

    参数 $k$ $\alpha $ $\beta $ $\gamma $ $p$ $b$
    2.4179 2.8832 9.5865 4.3025 0.0039 0.9871
    下载: 导出CSV

    表  3  均方根误差表

    频率(Hz)均方根误差
    300.004024
    500.005977
    1000.064188
    下载: 导出CSV
  • [1] 孙秀婷, 钱佳伟, 齐志凤, 等. 非线性隔振及时滞消振方法研究进展[J]. 力学进展, 2023, 53(2): 308–356. doi: 10.6052/1000-0992-22-048.

    SUN Xiuting, QIAN Jiawei, QI Zhifeng, et al. Review on research progress of nonlinear vibration isolation and time-delayed suppression method[J]. Advances in Mechanics, 2023, 53(2): 308–356. doi: 10.6052/1000-0992-22-048.
    [2] NISTRI F, COSENTINI R M, DAL POGGETTO V F, et al. Attenuation of bulk waves using locally resonant soil-coupled metabarriers[J]. Journal of Physics D: Applied Physics, 2025, 58(4): 045502. doi: 10.1088/1361-6463/ad8ad0.
    [3] 刘涛, 李爱群. 准零刚度隔振系统的分析及研究进展[J]. 东南大学学报: 自然科学版, 2023, 53(6): 997–1012. doi: 10.3969/j.issn.1001-0505.2023.06.006.

    LIU Tao and LI Aiqun. An overview of research progress on quasi-zero stiffness vibration isolation systems[J]. Journal of Southeast University: Natural Science Edition, 2023, 53(6): 997–1012. doi: 10.3969/j.issn.1001-0505.2023.06.006. doi: 10.3969/j.issn.1001-0505.2023.06.006.
    [4] LI Xuan, DING Bingxiao, RAN Jinchao, et al. Design and characterization of a compact tripod quasi-zero-stiffness device for isolating low-frequency vibrations[J]. Precision Engineering, 2024, 91: 632–643. doi: 10.1016/j.precisioneng.2024.10.013.
    [5] MENG Qingye, HOU Lei, LIN Rongzhou, et al. Accurate nonlinear dynamic characteristics analysis of quasi-zero-stiffness vibration isolator via a modified incremental harmonic balance method[J]. Nonlinear Dynamics, 2024, 112(1): 125–150. doi: 10.1007/s11071-023-09036-y.
    [6] GATTI G. A nonlinear quasi-zero stiffness vibration isolator with quintic restoring force characteristic: A fundamental analytical insight[J]. Journal of Vibration and Control, 2024, 30(17/18): 4185–4198. doi: 10.1177/10775463231205806.
    [7] ZENG Rong, WEN Guilin, ZHOU Jiaxi, et al. Experimental investigation of a non-smooth quasi-zero-stiffness isolator[J]. Acta Mechanica Sinica, 2023, 39(6): 522415. doi: 10.1007/s10409-023-22415-x.
    [8] CARRELLA A, BRENNAN M J, WATERS T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012, 55(1): 22–29. doi: 10.1016/j.ijmecsci.2011.11.012.
    [9] 杨兆豪, 帅长庚, 李步云. 一种基于五弹簧模型的准零刚度隔振装置特性分析[J]. 舰船科学技术, 2023, 45(18): 77–84. doi: 10.3404/j.issn.1672-7649.2023.18.013.

    YANG Zhaohao, SHUAI Changgeng, and LI Buyun. Analysis of a five-spring vibration isolator with quasi-zero-stiffness characteristic[J]. Ship Science and Technology, 2023, 45(18): 77–84. doi: 10.3404/j.issn.1672-7649.2023.18.013.
    [10] 徐道临, 张月英, 周加喜, 等. 一种准零刚度隔振器的特性分析与实验研究[J]. 振动与冲击, 2014, 33(11): 208–213. doi: 10.13465/j.cnki.jvs.2014.11.036.

    XU Daolin, ZHANG Yueying, ZHOU Jiaxi, et al. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness[J]. Journal of Vibration and Shock, 2014, 33(11): 208–213. doi: 10.13465/j.cnki.jvs.2014.11.036.
    [11] YUN Hai, LIU Lei, LI Qing, et al. Investigation on two-stage vibration suppression and precision pointing for space optical payloads[J]. Aerospace Science and Technology, 2020, 96: 105543. doi: 10.1016/j.ast.2019.105543.
    [12] CAO J, LIU B, WU Q, et al. Research on the vibration control of micro-vibration using a novel hybrid isolator[J]. Experimental Techniques, 2024: 1–13. doi: 10.1007/S40799-024-00772-3.
    [13] SONG Henan, SHAN Xiaobiao, HOU Weijie, et al. A novel piezoelectric-based active-passive vibration isolator for low-frequency vibration system and experimental analysis of vibration isolation performance[J]. Energy, 2023, 278: 127870. doi: 10.1016/j.energy.2023.127870.
    [14] ZHU Wei, CHEN Gangli, and RUI Xiaoting. Modeling of piezoelectric stack actuators considering bonding layers[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(17): 2418–2427. doi: 10.1177/1045389X15575083.
    [15] 姚晓成, 蒋春燕, 赵程, 等. 压电促动器的研制及其减振效果[J]. 机械工程材料, 2021, 45(6): 89–93. doi: 10.11973/jxgccl202106016.

    YAO Xiaocheng, JIANG Chunyan, ZHAO Cheng, et al. Fabrication and vibration reduction effect of piezoelectric actuator[J]. Materials for Mechanical Engineering, 2021, 45(6): 89–93. doi: 10.11973/jxgccl202106016.
    [16] YANG Liu, ZHONG Ruobing, LI Dongjie, et al. A fractional-order Duhem model of rate-dependent hysteresis for piezoelectric actuators[J]. Measurement and Control, 2022, 55(9/10): 974–982. doi: 10.1177/00202940221092140.
    [17] YANG Liu, CHENG Jiajia, HE He, et al. Cross-medium time-delay active vibration isolation method based on voltage-force hysteresis model[J]. Measurement, 2024, 235: 115027. doi: 10.1016/j.measurement.2024.115027.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  36
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-11-19
  • 录用日期:  2025-12-01
  • 网络出版日期:  2025-12-04

目录

    /

    返回文章
    返回