高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无人机辅助的物联网设备多簇并发认证方案

马如慧 何诗洋 曹进 刘奎 李晖 邱源

马如慧, 何诗洋, 曹进, 刘奎, 李晖, 邱源. 无人机辅助的物联网设备多簇并发认证方案[J]. 电子与信息学报. doi: 10.11999/JEIT250279
引用本文: 马如慧, 何诗洋, 曹进, 刘奎, 李晖, 邱源. 无人机辅助的物联网设备多簇并发认证方案[J]. 电子与信息学报. doi: 10.11999/JEIT250279
MA Ruhui, HE Shiyang, CAO Jin, LIU Kui, LI Hui, QIU Yuan. Unmanned Aircraft Vehicle-assisted Multi Cluster Concurrent Authentication Scheme for Internet of Things Devices[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250279
Citation: MA Ruhui, HE Shiyang, CAO Jin, LIU Kui, LI Hui, QIU Yuan. Unmanned Aircraft Vehicle-assisted Multi Cluster Concurrent Authentication Scheme for Internet of Things Devices[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250279

无人机辅助的物联网设备多簇并发认证方案

doi: 10.11999/JEIT250279 cstr: 32379.14.JEIT250279
基金项目: 国家自然科学基金(62172317, U23B2024),上海市天基异构网络协同计算重点实验室开放基金(CCSN-2025-04),中央高校基本科研业务费专项资金资助项目(ZYTS25073)
详细信息
    作者简介:

    马如慧:女,副教授,研究方向为5G/6G网络、天地一体化网络安全认证机制等

    何诗洋:男,讲师,研究方向为基于FPGA的算法设计与实现

    曹进:男,教授,研究方向为5G/6G网络、天地一体化网络安全认证机制等

    刘奎:男,高级工程师,研究方向为卫星信息系统架构设计、卫星信息网络安全防护、卫星行为级安全算法等

    李晖:男,教授,研究方向为密码学、无线网络安全、信息理论和网络编码等

    邱源:男,高级工程师,研究方向为卫星信息系统架构设计、卫星信息网络安全防护、卫星行为级安全算法等

    通讯作者:

    何诗洋 syhe@xidian.edu.cn

  • 11) ‘-’表示该方案中未涉及相关内容
  • 中图分类号: TN918; TP309

Unmanned Aircraft Vehicle-assisted Multi Cluster Concurrent Authentication Scheme for Internet of Things Devices

Funds: The National Natural Science Foundation of China (62172317, U23B2024), Shanghai Key Laboratory of Collaborative Computing in Spacial Heterogenous Networks (CCSN-2025-04), The Fundamental Research Funds for the Central Universities (ZYTS25073)
  • 摘要: 为了应对物联网(IoT)设备在通过无人机(UAV)接入地面网络过程中可能面临的窃听和伪造攻击等安全威胁,以及避免因超海量设备并发接入导致的信令冲突和关键节点拥塞等问题,同时结合物联网设备低计算和存储能力等特点,利用物理不可克隆函数,该文提出一种基于无人机辅助的物联网设备多簇并发接入与切换认证方案。在该方案中,基于预共享密钥机制,无人机首先安全接入地面网络。随后,基于物理不可克隆函数,多簇物联网设备可以并发安全高效地通过无人机接入地面网,并且抵抗物理攻击、假冒攻击、中间人攻击等威胁,同时显著降低物联网设备侧的计算和存储开销。此外,当新无人机替换旧无人机时,多簇物联网设备可以并发安全高效地切换至新无人机,确保了设备网络服务的连续性。安全性和性能分析结果表明,该方案在计算和存储开销均较低的情况下,能够提供较为健壮的安全属性。此外,该方案在处理超海量设备并发接入时,能够有效减少信令开销,避免信令冲突和关键节点拥塞故障等问题。
  • 图  1  无人机辅助多簇物联网设备通信架构

    图  2  无人机接入过程与物联网设备接入过程Tamarin运行结果

    图  3  信令开销对比结果

    图  4  设备侧计算开销对比结果

    图  5  设备侧存储开销对比结果

    表  1  信令开销(m个簇,n个簇成员)

    方案 接入过程信令开销 切换过程信令开销
    基于格理论的无人机辅助设备认证方案[4] $ 6n\cdot m $ $ 3n\cdot m $
    基于椭圆曲线的无人机辅助组切换认证方案[5] - 1 $ n\cdot m $
    基于PUF的物联网设备组认证方案[25] $ (n+9)\cdot m $ -
    本方案 $ n\cdot m+3m+4 $ $ n\cdot m+4m+3 $
    下载: 导出CSV

    表  2  关键节点单个时间内接收到的最大信令数

    方案 $ n\cdot m $个设备并发接入 $ n\cdot m $个设备并发切换
    群主 接入点 群主 接入点
    基于格理论的无人机辅助设备认证方案[4] - $ n\cdot m $ - $ 2n\cdot m $
    基于椭圆曲线的无人机辅助组切换认证方案[5] - - - $ n\cdot m $
    基于PUF的物联网设备组认证方案[25] $ n\cdot m $ 1 - -
    本方案 $ n $ $ 2m $ $ n $ $ m $
    下载: 导出CSV

    表  3  物联网设备侧主要密码学计算操作

    方案接入过程计算操作切换过程计算操作
    基于格理论的无人机辅助设备认证方案[4]$ 8{t_{{\text{pm}}}} + 3{t_{{\text{se}}}} + 15{t_{\text{h}}} $$ 9{t_{\text{h}}} $
    基于椭圆曲线的无人机辅助组切换认证方案[5]-0
    基于PUF的物联网设备组认证方案[25]$ 8{t_{\text{h}}} + {t_{{\text{puf}}}} $-
    本方案$ 4{t_{\text{h}}} + {t_{{\text{puf}}}} $$ 3{t_{\text{h}}} $
    下载: 导出CSV
  • [1] MACH P and BECVAR Z. Mobile edge computing: A survey on architecture and computation offloading[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628–1656. doi: 10.1109/COMST.2017.2682318.
    [2] ZHANG Zhanpeng, XU Chen, LI Zewu, et al. Deep reinforcement learning for aerial data collection in hybrid-powered NOMA-IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(2): 1761–1774. doi: 10.1109/JIOT.2022.3209980.
    [3] 3GPP. Study on security aspects of uncrewed aerial systems (UAS) (Release 17)[R]. 3GPP TR 33.854 V0.4. 0, 2021.
    [4] MA Ruhui, CAO Jin, HE Shiyang, et al. A UAV-assisted UE access authentication scheme for 5G/6G network[J]. IEEE Transactions on Network and Service Management, 2024, 21(2): 2426–2444. doi: 10.1109/TNSM.2023.3341829.
    [5] AYDIN Y, KURT G K, OZDEMIR E, et al. Group handover for drone base stations[J]. IEEE Internet of Things Journal, 2021, 8(18): 13876–13887. doi: 10.1109/JIOT.2021.3068297.
    [6] CHOI J, KWON D, SON S, et al. A PUF-based lightweight authentication scheme for UAV-assisted internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2025. doi: 10.1109/TITS.2025.3564581. (查阅网上资料,未找到本条文献卷期页码信息,请确认并补充).
    [7] NIKOOGHADAM M, AMINTOOSI H, ISLAM S K H, et al. A provably secure and lightweight authentication scheme for internet of drones for smart city surveillance[J]. Journal of Systems Architecture, 2021, 115: 101955. doi: 10.1016/j.sysarc.2020.101955.
    [8] BERINI A D E, FERRAG M A, FAROU B, et al. HCALA: Hyperelliptic curve-based anonymous lightweight authentication scheme for internet of drones[J]. Pervasive and Mobile Computing, 2023, 92: 101798. doi: 10.1016/j.pmcj.2023.101798.
    [9] YU S, DAS A K, and PARK Y. RLBA-UAV: A robust and lightweight blockchain-based authentication and key agreement scheme for PUF-enabled UAVs[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 21697–21708. doi: 10.1109/TITS.2024.3480029.
    [10] BANSAL G and SIKDAR B. A secure and efficient mutual authentication protocol framework for unmanned aerial vehicles[C]. The 2021 IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 2021: 1–6. doi: 10.1109/GCWkshps52748.2021.9682006.
    [11] ALLADI T, VENKATESH V, CHAMOLA V, et al. Drone-MAP: A novel authentication scheme for drone-assisted 5G networks[C]. The IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, Canada, 2021: 1–6. doi: 10.1109/INFOCOMWKSHPS51825.2021.9484594.
    [12] BANSAL G and SIKDAR B. Achieving secure and reliable UAV authentication: A Shamir’s secret sharing based approach[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(4): 3598–3610. doi: 10.1109/TNSE.2024.3381599.
    [13] PU Cong, WALL A, CHOO K K R, et al. A lightweight and privacy-preserving mutual authentication and key agreement protocol for internet of drones environment[J]. IEEE Internet of Things Journal, 2022, 9(12): 9918–9933. doi: 10.1109/JIOT.2022.3163367.
    [14] KHAN M A, ULLAH I, ALKHALIFAH A, et al. A provable and privacy-preserving authentication scheme for UAV-enabled intelligent transportation systems[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3416–3425. doi: 10.1109/TII.2021.3101651.
    [15] LOUNIS K, DING S H H, and ZULKERNINE M. D2D-MAP: A drone to drone authentication protocol using physical unclonable functions[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5079–5093. doi: 10.1109/TVT.2022.3224611.
    [16] ALLADI T, NAREN, BANSAL G, et al. SecAuthUAV: A novel authentication scheme for UAV-ground station and UAV-UAV communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15068–15077. doi: 10.1109/TVT.2020.3033060.
    [17] KARMAKAR R, KADDOUM G, and AKHRIF O. A PUF and fuzzy extractor-based UAV-ground station and UAV-UAV authentication mechanism with intelligent adaptation of secure sessions[J]. IEEE Transactions on Mobile Computing, 2024, 23(5): 3858–3875. doi: 10.1109/TMC.2023.3284216.
    [18] LIU Chunpeng, HUANG Tao, and MA Maode. UAP: A system authentication protocol for UAV relay communication by UAV-assisted[J]. IEEE Open Journal of Vehicular Technology, 2025, 6: 1539–1550. doi: 10.1109/OJVT.2025.3567079.
    [19] LI Jinguo, WEN Mi, and ZHANG Tao. Group-based authentication and key agreement with dynamic policy updating for MTC in LTE-A networks[J]. IEEE Internet of Things Journal, 2016, 3(3): 408–417. doi: 10.1109/JIOT.2015.2495321.
    [20] CAO Jin, YAN Zheng, MA Ruhui, et al. LSAA: A lightweight and secure access authentication scheme for both UE and mMTC devices in 5G networks[J]. IEEE Internet of Things Journal, 2020, 7(6): 5329–5344. doi: 10.1109/JIOT.2020.2976740.
    [21] CAO Jin, YU Pu, MA Maode, et al. Fast authentication and data transfer scheme for massive NB-IoT devices in 3GPP 5G network[J]. IEEE Internet of Things Journal, 2019, 6(2): 1561–1575. doi: 10.1109/JIOT.2018.2846803.
    [22] CAO Jin, YU Pu, XIANG Xinyin, et al. Anti-quantum fast authentication and data transmission scheme for massive devices in 5G NB-IoT system[J]. IEEE Internet of Things Journal, 2019, 6(6): 9794–9805. doi: 10.1109/JIOT.2019.2931724.
    [23] NAKKAR M, ALTAWY R, and YOUSSEF A. GASE: A lightweight group authentication scheme with key agreement for edge computing applications[J]. IEEE Internet of Things Journal, 2023, 10(1): 840–854. doi: 10.1109/JIOT.2022.3204335.
    [24] ZHANG Xiaoyi, WU Huici, TAO Xiaofeng, et al. PUF-based lightweight group authentication for massive IoT access with insecure channel[J]. IEEE Internet of Things Journal, 2025, 12(14): 26968–26983. doi: 10.1109/JIOT.2025.3561943.
    [25] REN Xiongpeng, CAO Jin, MA Maode, et al. A novel PUF-based group authentication and data transmission scheme for NB-IoT in 3GPP 5G networks[J]. IEEE Internet of Things Journal, 2022, 9(5): 3642–3656. doi: 10.1109/JIOT.2021.3098224.
    [26] RAJ K, BODAPATI S, and CHATTOPADHYAY A. PUF-based lightweight mutual authentication protocol for internet of things (IoT) devices[C]. The 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, Singapore, 2024: 1–5. doi: 10.1109/ISCAS58744.2024.10558672.
    [27] DOLEV D and YAO A C. On the security of public key protocols[J]. IEEE Transactions on Information Theory, 1983, 29(2): 198–208. doi: 10.1109/TIT.1983.1056650.
    [28] CAO Jin, LI Sheng, MA Ruhui, et al. RPRIA: Reputation and PUF-based remote identity attestation protocol for massive IoT devices[J]. IEEE Internet of Things Journal, 2022, 9(19): 19174–19187. doi: 10.1109/JIOT.2022.3164174.
    [29] 3GPP. 3GPP TS 38.300-2025 NR; NR and NG-RAN overall description; Stage-2 (Release 15)[S]. Valbonne: 3GPP, 2025. (查阅网上资料, 未找到本条文献出版年信息, 请确认修改是否正确).
    [30] MEIER S, SCHMIDT B, CREMERS C, et al. The TAMARIN prover for the symbolic analysis of security protocols[C]. The 25th International Conference on Computer Aided Verification, Saint Petersburg, Russia, 2013: 696–701. doi: 10.1007/978-3-642-39799-8_48.
    [31] BASIN D, CREMERS C, KIM T H J, et al. Design, analysis, and implementation of ARPKI: An attack-resilient public-key infrastructure[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 15(3): 393–408. doi: 10.1109/TDSC.2016.2601610.
    [32] BASIN D, DREIER J, HIRSCHI L, et al. A formal analysis of 5G authentication[C]. The 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Canada, 2018: 1383–1396. doi: 10.1145/3243734.3243846.
    [33] REN Xiongpeng, CAO Jin, NIU Ben, et al. A formal analysis of 5G ProSe AKA protocols for U2N relay communication[J]. IEEE Transactions on Dependable and Secure Computing, 2025, 22(3): 2909–2924. doi: 10.1109/TDSC.2024.3522895.
    [34] National Institute of Standards and Technology. Recommendation for key management: Part 1–General[R]. NIST SP 800-57 PART 1 REV. 5, 2020.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  9
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-16
  • 修回日期:  2025-09-08
  • 网络出版日期:  2025-09-12

目录

    /

    返回文章
    返回