高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通用滤波多载波系统原型滤波器的连续凸近似优化设计方法

华惊宇 杨乐 闻建刚 邹园萍 盛斌

华惊宇, 杨乐, 闻建刚, 邹园萍, 盛斌. 通用滤波多载波系统原型滤波器的连续凸近似优化设计方法[J]. 电子与信息学报. doi: 10.11999/JEIT250278
引用本文: 华惊宇, 杨乐, 闻建刚, 邹园萍, 盛斌. 通用滤波多载波系统原型滤波器的连续凸近似优化设计方法[J]. 电子与信息学报. doi: 10.11999/JEIT250278
HUA Jingyu, YANG Le, WEN Jiangang, ZHOU Yuanping, SHENG Bin. A Successive Convex Approximation Optimization based Prototype Filter Design Method for Universal Filtered Multi-Carrier Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250278
Citation: HUA Jingyu, YANG Le, WEN Jiangang, ZHOU Yuanping, SHENG Bin. A Successive Convex Approximation Optimization based Prototype Filter Design Method for Universal Filtered Multi-Carrier Systems[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250278

通用滤波多载波系统原型滤波器的连续凸近似优化设计方法

doi: 10.11999/JEIT250278 cstr: 32379.14.JEIT250278
基金项目: 国家自然科学基金(62271445)
详细信息
    作者简介:

    华惊宇:男,教授,博士,研究方向为无线通信、无线定位、信号处理、数字滤波器等

    杨乐:男,硕士生,研究方向为多载波传输中的滤波器设计

    闻建刚:男,讲师,博士,研究方向为多载波传输、信号处理、数字滤波器等

    邹园萍:女,副教授,博士,研究方向为宽带通信、移动通信、信号处理等

    盛斌:男,教授,博士,研究方向为通信与信息系统、未来移动通信系统、无线传输技术研究等

    通讯作者:

    华惊宇 eehjy@163.com

  • 中图分类号: TN929.5

A Successive Convex Approximation Optimization based Prototype Filter Design Method for Universal Filtered Multi-Carrier Systems

Funds: The National Natural Science Foundation of China (62271445)
  • 摘要: 通用滤波多载波(UFMC)通过在正交频分复用(OFDM)技术中引入原型滤波器实现更优的载波间干扰(ICI)抑制能力,成为未来无线通信的重要波形。研究聚焦于UFMC系统在载波频率偏移(CFO)影响下进一步强化ICI抑制能力。该文首先研究了存在CFO时,UFMC系统的信号与干扰噪声比(SINR)表达式,其次构建了一个以最小化平均误码率(SER)为目标的滤波器优化设计模型。通过采用连续凸近似(SCA)处理,对原始非凸非线性问题进行了转换,并提出了一种原型滤波器最优设计方法。仿真结果表明,该文设计的最优原型滤波器在SER性能上优于过去推荐的切比雪夫(DC)滤波器,具有较强的抗干扰能力。对于UFMC在ICI严重场景中应用具有重要价值。
  • 图  1  UFMC系统框图

    图  2  SINR性能的验证与对比

    图  3  不同CFO和滤波器下的SINR比较

    图  4  不同 CFO、滤波器和调制方式下的 SER 性能比较

    1  基于SCA的原型滤波器设计算法

     (1) 根据式(42)-式(49)计算目标函数的梯度$\nabla g({x^t})$,
     (2) 将步骤(1)得到的目标函数的梯度$\nabla g({x^t})$代入式(41),对目标
     函数进行凸近似得到近似函数$ \tilde g({{\boldsymbol{f}}^0},{{\boldsymbol{f}}^t}) $,
     (3) 在步骤(2)得到近似函数$ \tilde g({{\boldsymbol{f}}^0},{{\boldsymbol{f}}^t}) $的基础上,根据式(51)、
     式(52)计算下降方向$ {{\boldsymbol{d}}^t} $,
     (4) 将$ {{\boldsymbol{f}}^t} + \gamma {{\boldsymbol{d}}^t} $代入式(53)得到精确线搜索步长 ,
     (5) 确定下降方向$ {{\boldsymbol{d}}^t} $和搜索步长${\gamma ^t}$后,根据式(58)更新迭代,
     (6) 若不满足终止条件,返回步骤(3),否则进入步骤(7),
     (7) 记录最优原型滤波器系数和此时的系统性能。
    下载: 导出CSV

    表  1  仿真参数

    系统参数 设定
    FFT大小 128
    子载波数、子带数 96, 6
    滤波器 DC, SCA
    滤波器长度 33
    调制方式 QPSK, 16 QAM, 64 QAM
    信噪比 1:1:20 dB
    载波频率偏移 0:0.025:0.05
    下载: 导出CSV
  • [1] TRICHIAS K, KALOXYLOS A, and WILLCOCK C. 6G global landscape: A comparative analysis of 6G targets and technological trends[C]. Proceedings of 2024 Joint European Conference on Networks and Communications & 6G Summit, Antwerp, Belgium, 2024: 1–6, doi: 10.1109/EuCNC/6GSummit60053.2024.10597064.
    [2] 任超, 丁思颖, 张晓奇, 等. 6G无线多模态通信技术[J]. 电子与信息学报, 2024, 46(5): 1658–1671. doi: 10.11999/JEIT231201.

    REN Chao, DING Siying, ZHANG Xiaoqi, et al. Wireless multimodal communications for 6G[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1658–1671. doi: 10.11999/JEIT231201.
    [3] LIU Xin, LIU Zechen, LAI Biaojun, et al. Fair energy-efficient resource optimization for multi-UAV enabled internet of things[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3962–3972. doi: 10.1109/TVT.2022.3219613.
    [4] GIORDANI M, POLESE M, MEZZAVILLA M, et al. Toward 6G networks: Use cases and technologies[J]. IEEE Communications Magazine, 2020, 58(3): 55–61. doi: 10.1109/MCOM.001.1900411.
    [5] 林奕森, 甘德樵, 葛晓虎. AI赋能6G: 绿色通信的未来[J]. 移动通信, 2024, 48(8): 20–24,55. doi: 10.3969/j.issn.1006-1010.20240621-0001.

    LIN Yisen, GAN Deqiao, and GE Xiaohu. AI-powered 6G: The future of green communications[J]. Mobile Communications, 2024, 48(8): 20–24,55. doi: 10.3969/j.issn.1006-1010.20240621-0001.
    [6] CHEN Zirui, ZHANG Zhaoyang, and YANG Zhaohui. Big AI models for 6G wireless networks: Opportunities, challenges, and research directions[J]. IEEE Wireless Communications, 2024, 31(5): 164–172. doi: 10.1109/MWC.015.2300404.
    [7] RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011.
    [8] 曾嵘, 邵智敏. 零前缀OFDM中智能反射表面环境下干扰抑制算法研究[J]. 电子与信息学报, 2022, 44(7): 2358–2365. doi: 10.11999/JEIT211389.

    ZENG Rong and SHAO Zhimin. Research on interference suppression algorithm in reconfigurable intelligent surface environment in ZP-OFDM[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2358–2365. doi: 10.11999/JEIT211389.
    [9] CHEN Da, WEI Houze, and CHEN Yun. Joint prototype filter and symbol distribution optimization for sidelobe suppression of FBMC-OQAM signals[J]. IEEE Transactions on Wireless Communications, 2025, 24(6): 4996–5008. doi: 10.1109/TWC.2025.3545427.
    [10] KIM J, PARK Y, WEON S, et al. A new filter-bank multicarrier system: The linearly processed FBMC system[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4888–4898. doi: 10.1109/TWC.2018.2832646.
    [11] WEN Jiangang, HUA Jingyu, LU Weidang, et al. Design of waveform shaping filter in the UFMC system[J]. IEEE Access, 2018, 6: 32300–32309. doi: 10.1109/ACCESS.2018.2837693.
    [12] ZHANG Lei, IJAZ A, XIAO Pei, et al. Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond[J]. IEEE Transactions on Communications, 2018, 66(3): 1205–1218. doi: 10.1109/TCOMM.2017.2771242.
    [13] KUNDRAPU S, DUTT V B S S I, KOILADA N K, et al. Characteristic analysis of OFDM, FBMC and UFMC modulation schemes for next generation wireless communication network systems[C]. Proceedings of 2019 3rd International conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 2019: 715–721. doi: 10.1109/ICECA.2019.8821991.
    [14] AMBATALI C D M and MARCIANO J J S. Performance evaluation of the UFMC scheme under various transmission impairments[C]. Proceedings of 2016 IEEE International Conference on Communication, Networks and Satellite, Surabaya, Indonesia, 2016: 24–28. doi: 10.1109/COMNETSAT.2016.7907410.
    [15] ZHANG Lei, IJAZ A, XIAO Pei, et al. Optimal filter length and zero padding length design for universal filtered multi-carrier (UFMC) system[J]. IEEE Access, 2019, 7: 21687–21701. doi: 10.1109/ACCESS.2019.2898322.
    [16] MAHESWARI M, NAGARAJAN N R, and BANUPRIYA M. Performance analysis of UFMC system with different prototype filters for 5G communication[M]. KUMAR L A, JAYASHREE L S, and MANIMEGALAI R. Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications. Cham: Springer, 2020: 207–216. doi: 10.1007/978-3-030-24051-6_20.
    [17] YARRABOTHU R S, KANCHUKOMMULA N, and NELAKUDITI U R. Design and analysis of universal-filtered multi-carrier (UFMC) waveform for 5G cellular communications using Kaiser filter[M]. WANG Jiacun, REDDY G R M, PRASAD V K, et al. Soft Computing and Signal Processing: Proceedings of ICSCSP 2018, Volume 2. Singapore: Springer, 2019: 721–730. doi: 10.1007/978-981-13-3393-4_73.
    [18] WANG Xiaojie, WILD T, SCHAICH F, et al. Universal filtered multi-carrier with leakage-based filter optimization[C]. Proceedings of 20th European Wireless Conference, Barcelona, Spain, 2014: 1–5.
    [19] WANG Xiaojie, WILD T, and SCHAICH F. Filter optimization for carrier-frequency- and timing-offset in universal filtered multi-carrier systems[C]. Proceedings of 2015 IEEE 81st Vehicular Technology Conference, Glasgow, UK, 2015: 1–6. doi: 10.1109/VTCSpring.2015.7145842.
    [20] ASGHARNIA M, HOSSEINI S A, SHAHZADI A, et al. Filter design and power allocation in multi-user universal filtered multi-carrier (MU-UFMC) systems[J]. Physical Communication, 2024, 62: 102257. doi: 10.1016/j.phycom.2023.102257.
    [21] WEN Jiangang, ZHOU Runjian, HUA Jingyu, et al. Design of nonlinear phase prototype filter based on coefficients symmetry for UFMC communication system[J]. Digital Signal Processing, 2023, 138: 104053. doi: 10.1016/j.dsp.2023.104053.
    [22] 闻建刚, 华惊宇, 邹园萍, 等. 移动物联网通信中的UFMC调制波形优化设计[J]. 信号处理, 2024, 40(4): 695–705. doi: 10.16798/j.issn.1003-0530.2024.04.008.

    WEN Jiangang, HUA Jingyu, ZOU Yuanping, et al. Optimal design of UFMC modulation waveform in mobile internet of things communication[J]. Journal of Signal Processing, 2024, 40(4): 695–705. doi: 10.16798/j.issn.1003-0530.2024.04.008.
    [23] 陈雷. 基于通用滤波的无线通信新型多载波传输技术关键问题研究[D]. [博士论文], 北京邮电大学, 2020. doi: 10.26969/d.cnki.gbydu.2020.003044.

    CHEN Lei. Research on key problems of new multi-carrier transmission technology for wireless communication based on universal filtering[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2020. doi: 10.26969/d.cnki.gbydu.2020.003044.
    [24] 王晶晶. UFMC系统的干扰分析和接收机重构算法研究[D]. [硕士论文], 浙江工商大学, 2022. doi: 10.27462/d.cnki.ghzhc.2022.000913.

    WANG Jingjing. Dissertation submitted to Zhejiang Gongshang university for master’s degree of master of engineering[D]. [Master dissertation], Zhejiang Gongshang University, 2022. doi: 10.27462/d.cnki.ghzhc.2022.000913.
    [25] LIN T T and HWANG F H. Blind CFO estimation in a UFMC system aided with virtual carriers[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4495–4499. doi: 10.1109/TVT.2022.3146765.
    [26] SI Fuping, ZHENG Jianping, and CHEN Changju. Reliability-based signal detection for universal filtered multicarrier[J]. IEEE Wireless Communications Letters, 2021, 10(4): 785–789. doi: 10.1109/LWC.2020.3043735.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-09-01
  • 网络出版日期:  2025-09-09

目录

    /

    返回文章
    返回