A 3D Underwater Target Tracking Algorithm with Integrated Grubbs-Information Entropy and Improved Particle Filter
-
摘要: 为解决三维空间中水下无线传感器网络(UWSN)在异常情况下进行目标跟踪时精度不佳的问题,该文提出一种基于优化Grubbs准则的信息熵加权数据融合和改进粒子滤波(IPF)的三维水下目标跟踪算法(OGIE-IPF)。首先,在粒子滤波框架中融合无迹卡尔曼滤波(UKF)算法以构建重要性密度函数,从而抑制粒子退化现象;同时,在重采样阶段提出一种动态自适应分层权重优化机制,通过差异化修正高、中、低权重粒子的分布,以增强粒子多样性并抑制贫化现象。其次,基于标准Grubbs准则提出以马氏距离替代传统的标准化残差思想构建异常统计量,通过融合多维变量的协方差矩阵,实现多维数据的异常检测。最后,基于IPF实现局部目标跟踪,结合优化的Grubbs准则进行异常检测与传感器信任评估,并通过信息熵加权的多源融合算法完成全局状态估计。仿真实验结果表明,所提改进算法相较于PF算法,粒子权重分布方差降低了约97.26%,而在低噪声和高噪声场景下相比于粒子滤波(PF)、扩展粒子滤波(EPF)、无迹粒子滤波(UPF)均方根误差分别降低了79.78%, 66.78%, 56.41%和83.41%, 70.38%, 21.68%。该文所提改进算法有效提高了水下异常情况下的目标跟踪精度,展现出良好的鲁棒性。Abstract:
Objective To address the limited target tracking accuracy of traditional Particle Filter (PF) algorithms in three-dimensional Underwater Wireless Sensor Networks (UWSNs) under abnormal conditions, this study proposes a three-dimensional underwater target tracking algorithm (OGIE-IPF). The algorithm integrates an optimized Grubbs criterion–based information entropy–weighted data fusion with an Improved Particle Filter (IPF). Conventional PF algorithms often suffer from particle degeneracy and impoverishment, which restrict estimation accuracy. Although weight optimization strategies introduced during resampling can enhance particle diversity, existing approaches mainly rely on fixed weighting factors that cannot dynamically adapt to real-time operating conditions. Moreover, current anomaly detection methods for multi-source data fusion fail to effectively address data coupling and heteroscedasticity across dimensions. To overcome these challenges, a dynamic adaptive hierarchical weight optimization strategy is designed for the resampling phase, enabling adaptive particle weighting across hierarchy levels. Additionally, a Mahalanobis distance discrimination mechanism is incorporated into the Grubbs criterion–based anomaly detection method, achieving effective multi-dimensional anomaly detection through covariance-sensitive analysis. Methods The proposed OGIE-IPF algorithm enhances target tracking accuracy under underwater abnormal conditions through a distributed data processing framework that integrates multi-source data fusion and adaptive filtering. First, the Unscented Kalman Filter (UKF) is incorporated into the particle filtering framework to construct the importance density function, thereby alleviating particle degeneracy. Simultaneously, a dynamic adaptive hierarchical weight optimization mechanism is proposed during the resampling phase to improve particle diversity. Second, the Mahalanobis distance replaces the conventional standardized residual method in the standard Grubbs criterion for anomaly statistic construction. By incorporating the covariance matrix of multidimensional variables, the method achieves effective anomaly detection for multi-dimensional data. Finally, local target tracking is performed using the IPF combined with the optimized Grubbs criterion for anomaly detection and sensor credibility evaluation, whereas global state estimation is realized through an information entropy–weighted multi-source fusion algorithm. Results and Discussions The IPF developed in this study is designed to enhance particle set diversity through optimization of the importance density function and refinement of the resampling strategy. To evaluate algorithm performance, a comparative experimental group with a particle population of 100 is established. Simulation results indicate that the weight distribution variances of the IPF at specific time points and over the entire tracking period are reduced by approximately 98.27% and 97.26%, respectively, compared with the traditional PF ( Figs. 3 and4 ). These findings suggest that the improved strategy effectively regulates particles with varying weights, resulting in a balanced distribution across hierarchical weight levels. Sensor anomalies are simulated by introducing substantial perturbations in observation noise. The experimental data show that the OGIE-IPF algorithm maintains optimal error metrics throughout the operational period (Figs. 5 and6 ), demonstrating superior capability in suppressing abnormal noise interference. To further assess algorithm robustness, two representative scenarios under low-noise and high-noise conditions are constructed for multi-algorithm comparison. The results indicate that OGIE-IPF achieves Root Mean Square Error (RMSE) reductions of 79.78%, 66.78%, and 56.41% compared with the PF, Extended Particle Filter (EPF), and Unscented Particle Filter (UPF) under low-noise conditions, and reductions of 83.41%, 70.38%, and 21.68% under high-noise conditions (Figs. 9 and12 ).Conclusions The OGIE-IPF algorithm proposed in this study enhances target tracking accuracy in three-dimensional underwater environments through two synergistic mechanisms. First, tracking precision is improved by refining the PF framework to optimize the intrinsic accuracy of the filtering process. Second, data fusion reliability is strengthened via an anomaly detection framework that mitigates interference from erroneous sensor measurements. Simulation results confirm that the OGIE-IPF algorithm produces state estimations more consistent with ground truth trajectories than conventional PF, EPF, and UPF algorithms, achieving lower RMSE and maintaining stable tracking performance under limited particle populations and abnormal noise conditions. Future work will extend the model to incorporate dynamic marine environmental factors and address the effects of malicious node interference within underwater network security systems. -
表 1 实验参数
参数名 参数值 目标初始位置(m) (100,400,20) 目标初始速度(v) (60,9,12) 目标初始加速度(m/s2) (-4,1,2) 初始粒子数 200 过程噪声协方差阵 diag(12 3,0.12 3,0.012 3) 观测噪声协方差阵 diag(1002,0.12,0.12) 表 2 算法平均位置误差和单步计算时间
滤波算法 粒子数(个) 平均RMSE(m) 平均单步时间(s) EPF 100 12.412 1 0.006 2 200 8.699 9 0.011 8 UPF 100 9.271 5 0.013 7 200 6.633 1 0.020 3 PF 100 18.481 3 0.003 5 200 14.291 5 0.006 1 300 12.668 9 0.008 4 400 10.962 5 0.010 3 OGIE-IPF 100 3.753 5 0.014 2 200 2.894 1 0.021 0 300 2.413 0 0.027 4 400 2.075 4 0.033 1 -
[1] 刘妹琴, 韩学艳, 张森林, 等. 基于水下传感器网络的目标跟踪技术研究现状与展望[J]. 自动化学报, 2021, 47(2): 235–251. doi: 10.16383/j.aas.c190886.LIU Meiqin, HAN Xueyan, ZHANG Senlin, et al. Research status and prospect of target tracking technologies via underwater sensor networks[J]. Acta Automatica Sinica, 2021, 47(2): 235–251. doi: 10.16383/j.aas.c190886. [2] 苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3): 1121–1133. doi: 10.11999/JEIT211576.SU Yishan, ZHANG Hehe, ZHANG Rui, et al. Review of security for underwater wireless sensor networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121–1133. doi: 10.11999/JEIT211576. [3] TANG Miaoyi, LIU Meiqin, ZHANG Senlin, et al. Distributed target tracking in UWSNs under stochastic node communication scheme[J]. IEEE Sensors Journal, 2024, 24(3): 3912–3926. doi: 10.1109/JSEN.2023.3342090. [4] JONDHALE S R and DESHPANDE R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks[J]. IEEE Sensors Journal, 2019, 19(1): 224–233. doi: 10.1109/JSEN.2018.2873357. [5] DAI Yong, YU Shuanghe, YAN Yan, et al. An EKF-based fast tube MPC scheme for moving target tracking of a redundant underwater vehicle-manipulator system[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2803–2814. doi: 10.1109/TMECH.2019.2943007. [6] KULIKOV G Y and KULIKOVA M V. Hyperbolic-SVD-based square-root unscented Kalman filters in continuous-discrete target tracking scenarios[J]. IEEE Transactions on Automatic Control, 2022, 67(1): 366–373. doi: 10.1109/TAC.2021.3056338. [7] 昝孟恩, 周航, 韩丹, 等. 粒子滤波目标跟踪算法综述[J]. 计算机工程与应用, 2019, 55(5): 8–17,59. doi: 10.3778/j.issn.1002-8331.1809-0242.ZAN Meng’en, ZHOU Hang, HAN Dan, et al. Survey of particle filter target tracking algorithms[J]. Computer Engineering and Applications, 2019, 55(5): 8–17,59. doi: 10.3778/j.issn.1002-8331.1809-0242. [8] 韩月, 陈鹏云, 沈鹏. 基于改进粒子滤波的AUV海底地形辅助定位方法[J]. 智能系统学报, 2020, 15(3): 553–559. doi: 10.11992/tis.201903027.HAN Yue, CHEN Pengyun, and SHEN Peng. Seabed terrain-aided positioning method based on improved particle filtering for AUVs[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 553–559. doi: 10.11992/tis.201903027. [9] KUPTAMETEE C and AUNSRI N. A review of resampling techniques in particle filtering framework[J]. Measurement, 2022, 193: 110836. doi: 10.1016/j.measurement.2022.110836. [10] 岳敬轩, 王红茹, 朱东琴, 等. 基于改进粒子滤波的无人机编队协同导航算法[J]. 航空学报, 2023, 44(14): 327995. doi: 10.7527/S1000-6893.2022.27995.YUE Jingxuan, WANG Hongru, ZHU Dongqin, et al. UAV formation cooperative navigation algorithm based on improved particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 327995. doi: 10.7527/S1000-6893.2022.27995. [11] 冉星浩, 杨路, 李春波. 基于权值优选的改进二阶中心差分粒子滤波算法[J]. 测控技术, 2020, 39(7): 68–72. doi: 10.19708/j.ckjs.2020.05.254.RAN Xinghao, YANG Lu, and LI Chunbo. An improved second-order central difference particle filter algorithm based on weight optimization[J]. Measurement & Control Technology, 2020, 39(7): 68–72. doi: 10.19708/j.ckjs.2020.05.254. [12] ZHAO Hui, WANG Lifen, ZHAO Jiangtao, et al. An improved particle filter based on robustness factor and weight optimization[C]. 2021 IEEE International Conference on Electronic Technology, Communication and Information, Changchun, China, 2021: 529–532. doi: 10.1109/ICETCI53161.2021.9563362. [13] 冉星浩, 陶建锋, 杨春晓. 基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法[J]. 探测与控制学报, 2018, 40(3): 74–79.RAN Xinghao, TAO Jianfeng, and YANG Chunxiao. An improved particle filter algorithm based on UKF and weight optimization[J]. Journal of Detection & Control, 2018, 40(3): 74–79. [14] 张宏伟. 双站纯方位空时软约束无迹粒子滤波算法[J]. 系统工程与电子技术, 2023, 45(5): 1261–1269. doi: 10.12305/j.issn.1001-506X.2023.05.01.ZHANG Hongwei. Dual-station unscented particle filter algorithm with spatiotemporal soft constraint[J]. Systems Engineering and Electronics, 2023, 45(5): 1261–1269. doi: 10.12305/j.issn.1001-506X.2023.05.01. [15] DU Sichun and QING Deng. Unscented particle filter algorithm based on divide-and-conquer sampling for target tracking[J]. Sensors, 2021, 21(6): 2236. doi: 10.3390/S21062236. [16] 张程振, 丁元明, 杨阳. 水下目标跟踪粒子滤波算法性能分析[J]. 火力与指挥控制, 2022, 47(2): 18–24. doi: 10.3969/j.issn.1002-0640.2022.02.004.ZHANG Chengzhen, DING Yuanming, and YANG Yang. Research on tracking performance of particle filter for tracking underwater targets[J]. Fire Control & Command Control, 2022, 47(2): 18–24. doi: 10.3969/j.issn.1002-0640.2022.02.004. [17] 张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079.ZHANG Ying and GAO Lingjun. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079. [18] 朱洪波, 高衍伸. 基于K-medoids信任的分布式H∞融合滤波算法[J/OL]. 计算机工程, 1-9. https://doi.org/10.19678/j.issn.1000-3428.0069791, 2024.ZHU Hongbo and GAO Yanshen. K-medoids-trust-based distributed H∞ fusion filtering algorithm[J/OL]. Computer Engineering, 1-9. https://doi.org/10.19678/j.issn.1000-3428.0069791, 2024. [19] 马静, 杨晓梅, 孙书利. 带时间相关乘性噪声多传感器系统的分布式融合估计[J]. 自动化学报, 2023, 49(8): 1745–1757. doi: 10.16383/j.aas.c210147.MA Jing, YANG Xiaomei, and SUN Shuli. Distributed fusion estimation for multi-sensor systems with time-correlated multiplicative noises[J]. Acta Automatica Sinica, 2023, 49(8): 1745–1757. doi: 10.16383/j.aas.c210147. [20] 段战胜, 韩崇昭, 陶唐飞. 基于最小二乘准则的多传感器参数估计数据融合[J]. 计算机工程与应用, 2004, 40(15): 1–3. doi: 10.3321/j.issn:1002-8331.2004.15.001.DUAN Zhansheng, HAN Chongzhao, and TAO Tangfei. Multi-sensor parameter estimation data fusion based on least-square criterion[J]. Computer Engineering and Applications, 2004, 40(15): 1–3. doi: 10.3321/j.issn:1002-8331.2004.15.001. [21] 周思益, 张江梅, 冯兴华, 等. 基于改进的多传感器自适应加权融合算法研究[J]. 自动化仪表, 2021, 42(11): 58–62. doi: 10.16086/j.cnki.issn1000-0380.2021030042.ZHOU Siyi, ZHANG Jiangmei, FENG Xinghua, et al. Research on adaptive weighted fusion algorithm based on the improved multi-sensor[J]. Process Automation Instrumentation, 2021, 42(11): 58–62. doi: 10.16086/j.cnki.issn1000-0380.2021030042. [22] DONG Xun, HU Gaoge, GAO Bingbing, et al. Windowing-based factor graph optimization with anomaly detection using mahalanobis distance for underwater INS/DVL/USBL integration[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8501213. doi: 10.1109/TIM.2024.3353286. [23] XU Weihua, PAN Yanzhou, CHEN Xiuwei, et al. A novel dynamic fusion approach using information entropy for interval-valued ordered datasets[J]. IEEE Transactions on Big Data, 2023, 9(3): 845–859. doi: 10.1109/TBDATA.2022.3215494. [24] 陶洋, 祝小钧, 杨柳. 基于皮尔逊相关系数和信息熵的多传感器数据融合[J]. 小型微型计算机系统, 2023, 44(5): 1075–1080. doi: 10.20009/j.cnki.21-1106/TP.2021-0698.TAO Yang, ZHU Xiaojun, and YANG Liu. Multi-sensor data fusion based on Pearson coefficient and information entropy[J]. Journal of Chinese Computer Systems, 2023, 44(5): 1075–1080. doi: 10.20009/j.cnki.21-1106/TP.2021-0698. -
下载:
下载: