高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合Grubbs-信息熵与改进粒子滤波的三维水下目标跟踪算法

蔡芳林 王骥 邱浩玮

蔡芳林, 王骥, 邱浩玮. 融合Grubbs-信息熵与改进粒子滤波的三维水下目标跟踪算法[J]. 电子与信息学报. doi: 10.11999/JEIT250249
引用本文: 蔡芳林, 王骥, 邱浩玮. 融合Grubbs-信息熵与改进粒子滤波的三维水下目标跟踪算法[J]. 电子与信息学报. doi: 10.11999/JEIT250249
CAI Fanglin, WANG Ji, QIU Haowei. A 3D Underwater Target Tracking Algorithm with Integrated Grubbs-Information Entropy and Improved Particle Filter[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250249
Citation: CAI Fanglin, WANG Ji, QIU Haowei. A 3D Underwater Target Tracking Algorithm with Integrated Grubbs-Information Entropy and Improved Particle Filter[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250249

融合Grubbs-信息熵与改进粒子滤波的三维水下目标跟踪算法

doi: 10.11999/JEIT250249 cstr: 32379.14.JEIT250249
基金项目: 广东省普通高校重点领域新一代信息技术专项项目(2020ZDZX3008)
详细信息
    作者简介:

    蔡芳林:男,硕士生,研究方向为水下无线传感器网络目标跟踪与定位

    王骥:男,教授,研究方向为无线传感器网络、海洋物联网与人工智能

    邱浩玮:男,硕士生,研究方向为水下目标识别与探测

    通讯作者:

    王骥 13902576499@163.com

  • 中图分类号: TN929.3;TP393

A 3D Underwater Target Tracking Algorithm with Integrated Grubbs-Information Entropy and Improved Particle Filter

Funds: Key Areas Special Project of New Generation Information Technology for Higher Education Institutions in Guangdong Province (2020ZDZX3008)
  • 摘要: 为解决三维空间中水下无线传感器网络(UWSN)在异常情况下进行目标跟踪时精度不佳的问题,该文提出一种基于优化Grubbs准则的信息熵加权数据融合和改进粒子滤波(IPF)的三维水下目标跟踪算法(OGIE-IPF)。首先,在粒子滤波框架中融合无迹卡尔曼滤波(UKF)算法以构建重要性密度函数,从而抑制粒子退化现象;同时,在重采样阶段提出一种动态自适应分层权重优化机制,通过差异化修正高、中、低权重粒子的分布,以增强粒子多样性并抑制贫化现象。其次,基于标准Grubbs准则提出以马氏距离替代传统的标准化残差思想构建异常统计量,通过融合多维变量的协方差矩阵,实现多维数据的异常检测。最后,基于IPF实现局部目标跟踪,结合优化的Grubbs准则进行异常检测与传感器信任评估,并通过信息熵加权的多源融合算法完成全局状态估计。仿真实验结果表明,所提改进算法相较于PF算法,粒子权重分布方差降低了约97.26%,而在低噪声和高噪声场景下相比于粒子滤波(PF)、扩展粒子滤波(EPF)、无迹粒子滤波(UPF)均方根误差分别降低了79.78%, 66.78%, 56.41%和83.41%, 70.38%, 21.68%。该文所提改进算法有效提高了水下异常情况下的目标跟踪精度,展现出良好的鲁棒性。
  • 图  2  三维仿真场景

    图  3  某一时刻粒子权重分布对比

    图  4  整个时间段内所有粒子权重分布对比

    图  5  融合算法的跟踪轨迹图

    图  6  融合算法的位置RMSE

    图  7  融合算法的平均位置RMSE

    图  8  低噪声下算法的目标轨迹跟踪图

    图  11  高噪声下算法的目标轨迹跟踪图

    图  9  低噪声下算法的RMSE

    图  12  高噪声下算法的RMSE

    图  10  低噪声下算法的平均位置RMSE

    图  13  高噪声下算法的平均位置RMSE

    表  1  实验参数

    参数名参数值
    目标初始位置(m)(100,400,20)
    目标初始速度(v)(60,9,12)
    目标初始加速度(m/s2)(-4,1,2)
    初始粒子数200
    过程噪声协方差阵diag(12 3,0.12 3,0.012 3)
    观测噪声协方差阵diag(1002,0.12,0.12)
    下载: 导出CSV

    表  2  算法平均位置误差和单步计算时间

    滤波算法粒子数(个)平均RMSE(m)平均单步时间(s)
    EPF10012.412 10.006 2
    2008.699 90.011 8
    UPF1009.271 50.013 7
    2006.633 10.020 3
    PF10018.481 30.003 5
    20014.291 50.006 1
    30012.668 90.008 4
    40010.962 50.010 3
    OGIE-IPF1003.753 50.014 2
    2002.894 10.021 0
    3002.413 00.027 4
    4002.075 40.033 1
    下载: 导出CSV
  • [1] 刘妹琴, 韩学艳, 张森林, 等. 基于水下传感器网络的目标跟踪技术研究现状与展望[J]. 自动化学报, 2021, 47(2): 235–251. doi: 10.16383/j.aas.c190886.

    LIU Meiqin, HAN Xueyan, ZHANG Senlin, et al. Research status and prospect of target tracking technologies via underwater sensor networks[J]. Acta Automatica Sinica, 2021, 47(2): 235–251. doi: 10.16383/j.aas.c190886.
    [2] 苏毅珊, 张贺贺, 张瑞, 等. 水下无线传感器网络安全研究综述[J]. 电子与信息学报, 2023, 45(3): 1121–1133. doi: 10.11999/JEIT211576.

    SU Yishan, ZHANG Hehe, ZHANG Rui, et al. Review of security for underwater wireless sensor networks[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1121–1133. doi: 10.11999/JEIT211576.
    [3] TANG Miaoyi, LIU Meiqin, ZHANG Senlin, et al. Distributed target tracking in UWSNs under stochastic node communication scheme[J]. IEEE Sensors Journal, 2024, 24(3): 3912–3926. doi: 10.1109/JSEN.2023.3342090.
    [4] JONDHALE S R and DESHPANDE R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks[J]. IEEE Sensors Journal, 2019, 19(1): 224–233. doi: 10.1109/JSEN.2018.2873357.
    [5] DAI Yong, YU Shuanghe, YAN Yan, et al. An EKF-based fast tube MPC scheme for moving target tracking of a redundant underwater vehicle-manipulator system[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(6): 2803–2814. doi: 10.1109/TMECH.2019.2943007.
    [6] KULIKOV G Y and KULIKOVA M V. Hyperbolic-SVD-based square-root unscented Kalman filters in continuous-discrete target tracking scenarios[J]. IEEE Transactions on Automatic Control, 2022, 67(1): 366–373. doi: 10.1109/TAC.2021.3056338.
    [7] 昝孟恩, 周航, 韩丹, 等. 粒子滤波目标跟踪算法综述[J]. 计算机工程与应用, 2019, 55(5): 8–17,59. doi: 10.3778/j.issn.1002-8331.1809-0242.

    ZAN Meng’en, ZHOU Hang, HAN Dan, et al. Survey of particle filter target tracking algorithms[J]. Computer Engineering and Applications, 2019, 55(5): 8–17,59. doi: 10.3778/j.issn.1002-8331.1809-0242.
    [8] 韩月, 陈鹏云, 沈鹏. 基于改进粒子滤波的AUV海底地形辅助定位方法[J]. 智能系统学报, 2020, 15(3): 553–559. doi: 10.11992/tis.201903027.

    HAN Yue, CHEN Pengyun, and SHEN Peng. Seabed terrain-aided positioning method based on improved particle filtering for AUVs[J]. CAAI Transactions on Intelligent Systems, 2020, 15(3): 553–559. doi: 10.11992/tis.201903027.
    [9] KUPTAMETEE C and AUNSRI N. A review of resampling techniques in particle filtering framework[J]. Measurement, 2022, 193: 110836. doi: 10.1016/j.measurement.2022.110836.
    [10] 岳敬轩, 王红茹, 朱东琴, 等. 基于改进粒子滤波的无人机编队协同导航算法[J]. 航空学报, 2023, 44(14): 327995. doi: 10.7527/S1000-6893.2022.27995.

    YUE Jingxuan, WANG Hongru, ZHU Dongqin, et al. UAV formation cooperative navigation algorithm based on improved particle filter[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 327995. doi: 10.7527/S1000-6893.2022.27995.
    [11] 冉星浩, 杨路, 李春波. 基于权值优选的改进二阶中心差分粒子滤波算法[J]. 测控技术, 2020, 39(7): 68–72. doi: 10.19708/j.ckjs.2020.05.254.

    RAN Xinghao, YANG Lu, and LI Chunbo. An improved second-order central difference particle filter algorithm based on weight optimization[J]. Measurement & Control Technology, 2020, 39(7): 68–72. doi: 10.19708/j.ckjs.2020.05.254.
    [12] ZHAO Hui, WANG Lifen, ZHAO Jiangtao, et al. An improved particle filter based on robustness factor and weight optimization[C]. 2021 IEEE International Conference on Electronic Technology, Communication and Information, Changchun, China, 2021: 529–532. doi: 10.1109/ICETCI53161.2021.9563362.
    [13] 冉星浩, 陶建锋, 杨春晓. 基于无迹卡尔曼滤波和权值优化的改进粒子滤波算法[J]. 探测与控制学报, 2018, 40(3): 74–79.

    RAN Xinghao, TAO Jianfeng, and YANG Chunxiao. An improved particle filter algorithm based on UKF and weight optimization[J]. Journal of Detection & Control, 2018, 40(3): 74–79.
    [14] 张宏伟. 双站纯方位空时软约束无迹粒子滤波算法[J]. 系统工程与电子技术, 2023, 45(5): 1261–1269. doi: 10.12305/j.issn.1001-506X.2023.05.01.

    ZHANG Hongwei. Dual-station unscented particle filter algorithm with spatiotemporal soft constraint[J]. Systems Engineering and Electronics, 2023, 45(5): 1261–1269. doi: 10.12305/j.issn.1001-506X.2023.05.01.
    [15] DU Sichun and QING Deng. Unscented particle filter algorithm based on divide-and-conquer sampling for target tracking[J]. Sensors, 2021, 21(6): 2236. doi: 10.3390/S21062236.
    [16] 张程振, 丁元明, 杨阳. 水下目标跟踪粒子滤波算法性能分析[J]. 火力与指挥控制, 2022, 47(2): 18–24. doi: 10.3969/j.issn.1002-0640.2022.02.004.

    ZHANG Chengzhen, DING Yuanming, and YANG Yang. Research on tracking performance of particle filter for tracking underwater targets[J]. Fire Control & Command Control, 2022, 47(2): 18–24. doi: 10.3969/j.issn.1002-0640.2022.02.004.
    [17] 张颖, 高灵君. 基于格拉布斯准则和改进粒子滤波算法的水下传感网目标跟踪[J]. 电子与信息学报, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079.

    ZHANG Ying and GAO Lingjun. Target tracking with underwater sensor networks based on Grubbs criterion and improved particle filter algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2294–2301. doi: 10.11999/JEIT190079.
    [18] 朱洪波, 高衍伸. 基于K-medoids信任的分布式H融合滤波算法[J/OL]. 计算机工程, 1-9. https://doi.org/10.19678/j.issn.1000-3428.0069791, 2024.

    ZHU Hongbo and GAO Yanshen. K-medoids-trust-based distributed H fusion filtering algorithm[J/OL]. Computer Engineering, 1-9. https://doi.org/10.19678/j.issn.1000-3428.0069791, 2024.
    [19] 马静, 杨晓梅, 孙书利. 带时间相关乘性噪声多传感器系统的分布式融合估计[J]. 自动化学报, 2023, 49(8): 1745–1757. doi: 10.16383/j.aas.c210147.

    MA Jing, YANG Xiaomei, and SUN Shuli. Distributed fusion estimation for multi-sensor systems with time-correlated multiplicative noises[J]. Acta Automatica Sinica, 2023, 49(8): 1745–1757. doi: 10.16383/j.aas.c210147.
    [20] 段战胜, 韩崇昭, 陶唐飞. 基于最小二乘准则的多传感器参数估计数据融合[J]. 计算机工程与应用, 2004, 40(15): 1–3. doi: 10.3321/j.issn:1002-8331.2004.15.001.

    DUAN Zhansheng, HAN Chongzhao, and TAO Tangfei. Multi-sensor parameter estimation data fusion based on least-square criterion[J]. Computer Engineering and Applications, 2004, 40(15): 1–3. doi: 10.3321/j.issn:1002-8331.2004.15.001.
    [21] 周思益, 张江梅, 冯兴华, 等. 基于改进的多传感器自适应加权融合算法研究[J]. 自动化仪表, 2021, 42(11): 58–62. doi: 10.16086/j.cnki.issn1000-0380.2021030042.

    ZHOU Siyi, ZHANG Jiangmei, FENG Xinghua, et al. Research on adaptive weighted fusion algorithm based on the improved multi-sensor[J]. Process Automation Instrumentation, 2021, 42(11): 58–62. doi: 10.16086/j.cnki.issn1000-0380.2021030042.
    [22] DONG Xun, HU Gaoge, GAO Bingbing, et al. Windowing-based factor graph optimization with anomaly detection using mahalanobis distance for underwater INS/DVL/USBL integration[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 8501213. doi: 10.1109/TIM.2024.3353286.
    [23] XU Weihua, PAN Yanzhou, CHEN Xiuwei, et al. A novel dynamic fusion approach using information entropy for interval-valued ordered datasets[J]. IEEE Transactions on Big Data, 2023, 9(3): 845–859. doi: 10.1109/TBDATA.2022.3215494.
    [24] 陶洋, 祝小钧, 杨柳. 基于皮尔逊相关系数和信息熵的多传感器数据融合[J]. 小型微型计算机系统, 2023, 44(5): 1075–1080. doi: 10.20009/j.cnki.21-1106/TP.2021-0698.

    TAO Yang, ZHU Xiaojun, and YANG Liu. Multi-sensor data fusion based on Pearson coefficient and information entropy[J]. Journal of Chinese Computer Systems, 2023, 44(5): 1075–1080. doi: 10.20009/j.cnki.21-1106/TP.2021-0698.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-09
  • 修回日期:  2025-10-22
  • 网络出版日期:  2025-10-27

目录

    /

    返回文章
    返回