高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

YOLO-SCDI:基于改进YOLOv8的车辆检测算法

吴林 曹雯

吴林, 曹雯. YOLO-SCDI:基于改进YOLOv8的车辆检测算法[J]. 电子与信息学报. doi: 10.11999/JEIT250238
引用本文: 吴林, 曹雯. YOLO-SCDI:基于改进YOLOv8的车辆检测算法[J]. 电子与信息学报. doi: 10.11999/JEIT250238
WU Lin, CAO Wen. YOLO-SCDI: A Vehicle Detection Algorithm Based on an Improved YOLOv8[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250238
Citation: WU Lin, CAO Wen. YOLO-SCDI: A Vehicle Detection Algorithm Based on an Improved YOLOv8[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250238

YOLO-SCDI:基于改进YOLOv8的车辆检测算法

doi: 10.11999/JEIT250238 cstr: 32379.14.JEIT250238
基金项目: 西安市科技局科技计划项目(24GXFW0097)
详细信息
    作者简介:

    吴林:男,硕士生,研究方向为目标检测与跟踪

    曹雯:女,副教授,研究方向为多源信息融合,目标检测与跟踪,智能交通信息处理

    通讯作者:

    曹雯 caowen@chd.edu.cn

  • 中图分类号: TP391.41

YOLO-SCDI: A Vehicle Detection Algorithm Based on an Improved YOLOv8

Funds: Science and Technology Plan Project of Xi'an Science and Technology Bureau (24GXFW0097)
  • 摘要: 针对城市复杂道路环境中车辆检测面临的多尺度目标、密集车流遮挡等难题,该文提出了一种轻量化YOLO-SCDI车辆检测算法。首先,采用改进的C2f-SCSA模块替换骨干网络中的C2f模块,通过动态融合多尺度卷积核提取的局部与全局特征,同时结合空间-通道双维度注意力机制,从而实现精准的特征选择。其次,创新性地在颈部网络引入跨尺度特征融合模块(CCFM),通过4个卷积同步完成通道压缩与跨通道信息融合,显著增强了模型对不同尺度目标的适应性,同时降低了模型参数。再次,用Dynamic Head检测头替换传统检测头,通过尺度-空间-任务三维注意力机制动态调节特征响应,并引入动态卷积核生成网络,自适应调整检测头参数配置。最后,提出了Inner-ShapeIoU度量方法以优化边界框回归过程。实验结果表明,在精简后的UA-DETRAC数据集上,YOLO-SCDI在mAP@0.5和精确度(P)上分别达到了95.8%和95.9%,同时模型的参数量为2.37M,相较于基准模型YOLOv8n,精度分别提升了2.5%和4.1%,参数量减少了21.3%,具有更高的检测精度和更精简的模型参数。
  • 图  1  YOLOv8网络结构

    图  2  YOLO-SCDI网络结构图

    图  3  SCSA混合注意力机制模块结构

    图  4  C2f-SCSA模块结构

    图  5  CCFM模块结构图

    图  6  Shape-IoU计算

    图  7  白天和夜间不同光照下的检测结果对比

    图  8  雨、雪、雾天下的检测结果对比

    表  1  不同r值在UA-DETRAC数据集的对比实验

    ModelmAP@0.5P(%)
    YOLOv8n0.93391.8
    +Inner-ShapeIoU(r=1.5)0.94093.0
    +Inner-ShapeIoU(r=1.25)0.93691.3
    +Inner-ShapeIoU(r=1.0)0.93992.3
    +Inner-ShapeIoU(r=0.75)0.94293.3
    +Inner-ShapeIoU(r=0.5)0.94193.1
    下载: 导出CSV

    表  2  实验参数设置

    参数设置
    迭代次数150
    学习率0.01
    动量0.937
    批大小32
    优化器SGD
    图像大小640×640
    下载: 导出CSV

    表  3  改进模型的消融实验

    C2f_SCSACCFMDynamic HeadInner-ShapeIoUmAP@0.5(%)mAP@0.5:0.95(%)Param(M)GFLOPs
    0.9330.7993.018.2
    0.9390.7943.058.3
    0.9240.7791.976.7
    0.9610.8274.7514.8
    0.9420.7783.018.2
    0.9480.8012.377.6
    0.9420.7712.377.6
    0.9590.8164.7614.8
    0.9260.7801.976.7
    0.9510.8062.377.6
    0.9580.8032.377.6
    下载: 导出CSV

    表  4  对比实验(UA-DETRAC数据集)

    Method mAP@0.5 mAP@0.5:0.95 P(%) R(%) Params(M) GFLOPs
    YOLOv3tiny 0.935 0.775 92.1 86.6 12.1 19.0
    YOLOv5s 0.954 0.823 92.7 90.6 9.1 24.0
    YOLOv5m 0.961 0.833 95.9 89.5 25.1 64.4
    YOLOv6m 0.942 0.812 92.0 88.6 52.0 161.6
    YOLOv8n 0.933 0.800 91.8 88.8 3.0 8.2
    YOLOv8s 0.955 0.816 90.6 93.3 11.1 28.7
    YOLOv9c 0.959 0.835 92.0 93.3 25.5 103.7
    YOLOv11n 0.929 0.786 90.4 86.7 2.6 6.4
    YOLOv12n 0.924 0.775 92.4 86.2 2.5 6.0
    NanoDet 0.915 0.703 - - 0.94 0.35
    RT-DETR 0.937 0.798 93.3 90.9 42.8 134.5
    SSD 0.773 - - - 27.2 59.2
    Faster-RCNN 0.917 - - - 44.6 70.0
    YOLO-SDCS 0.958 0.803 95.9 89.5 2.4 7.6
    下载: 导出CSV

    表  5  对比实验(BDD100K数据集)

    Method mAP@0.5(%) mAP@0.5:0.95(%) P(%) R(%)
    YOLOv5n 0.367 0.205 43.0 39.4
    YOLOv8n 0.370 0.190 51.2 38.7
    YOLOv11n 0.371 0.207 43.8 37.6
    YOLOv12n 0.362 0.203 42.8 37.9
    NanoDet 0.175 0.091 - -
    RT-DETR 0.481 0.270 58.9 48.5
    Faster-RCNN 0.215 - - -
    YOLO-SDCS 0.384 0.201 44.8 38.0
    下载: 导出CSV
  • [1] 王宇. 基于深度学习的目标检测算法综述[J]. 科技资讯, 2025, 23(2): 64–66. doi: 10.16661/j.cnki.1672-3791.2407-5042-8334.

    WANG Yu. An overview of object detection algorithm based on deep learning[J]. Science & Technology Information, 2025, 23(2): 64–66. doi: 10.16661/j.cnki.1672-3791.2407-5042-8334.
    [2] LI Jiewen, ZHAO Zhicheng, WU Yanlan, et al. HOG-VGG: VGG network with HOG feature fusion for high-precision PolSAR terrain classification[J]. Journal of Harbin Institute of Technology (New Series), 2024, 31(5): 1–15. doi: 10.11916/j.issn.1005-9113.2023089.
    [3] 王宁, 智敏. 深度学习下的单阶段通用目标检测算法研究综述[J]. 计算机科学与探索, 2025, 19(5): 1115–1140. doi: 10.3778/j.issn.1673-9418.2411032.

    WANG Ning and ZHI Min. Review of one-stage universal object detection algorithms in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1115–1140. doi: 10.3778/j.issn.1673-9418.2411032.
    [4] 陈憶悯, 李万益, 翁汉锐, 等. 基于深度学习的两阶段目标检测算法综述[J]. 信息与电脑(理论版), 2023, 35(14): 112–114.

    CHEN Yimin, LI Wanyi, WENG Hanrui, et al. Overview of two-stage object detection algorithms based on deep learning[J]. Information & Computer, 2023, 35(14): 112–114.
    [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587. doi: 10.1109/CVPR.2014.81.
    [6] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
    [7] HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 2980- 2988. doi: 10.1109/ICCV.2017.322.
    [8] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 2844–2853. doi: 10.1109/CVPR.2019.00296.
    [9] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37. doi: 10.1007/978-3-319-46448-0_2.
    [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
    [11] VARGHESE R and M. S. YOLOv8: A novel object detection algorithm with enhanced performance and robustness[C]. 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), Chennai, India, 2024: 1–6. doi: 10.1109/ADICS58448.2024.10533619.
    [12] 张浩晨, 张竹林, 史瑞岩, 等. YOLO-CDC: 优化改进YOLOv8的车辆目标检测算法[J]. 计算机工程与应用, 2025, 61(13): 124–137. doi: 10.3778/j.issn.1002-8331.2411-0390.

    ZHANG Haochen, ZHANG Zhulin, SHI Ruiyan, et al. YOLO-CDC: Improved YOLOv8 vehicle object detection algorithm[J]. Computer Engineering and Applications, 2025, 61(13): 124–137. doi: 10.3778/j.issn.1002-8331.2411-0390.
    [13] 许德刚, 王双臣, 尹柯栋, 等. 改进YOLOv8的城市车辆目标检测算法[J]. 计算机工程, 2024, 60(18): 136–146. doi: 10.3778/j.issn.1002-8331.2401-0277.

    XU Degang, WANG Shuangchen, YIN Kedong, et al. Improved YOLOv8 urban vehicle target detection algorithm[J]. Computer Engineering and Applications, 2024, 60(18): 136–146. doi: 10.3778/j.issn.1002-8331.2401-0277.
    [14] 寇发荣, 肖伟, 何海洋, 等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报, 2023, 45(7): 2642–2649. doi: 10.11999/JEIT220725.

    KOU Farong, XIAO Wei, HE Haiyang, et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2642–2649. doi: 10.11999/JEIT220725.
    [15] 项家灏, 徐慧英, 徐广平, 等. MECW-YOLO: 基于改进YOLOv8的无人机视角小目标检测算法[J/OL]. 计算机工程与科学, 1–12[2025-03-20]. https://link.cnki.net/urlid/43.1258.TP.20241225.1106.008.

    XIANG Jiahao, XU Huiying, XU Guangping, et al. MECW-YOLO: An algorithm for detecting small targets in drone perspective using improved YOLOv8[J/OL]. Computer Engineering & Science, 1–12[2025-03-20]. https://link.cnki.net/urlid/43.1258.TP.20241225.1106.008.
    [16] SI Yunzhong, XU Huiying, ZHU Xinzhong, et al. SCSA: Exploring the synergistic effects between spatial and channel attention[J]. Neurocomputing, 2025, 634: 129866. doi: 10.1016/j.neucom.2025.129866.
    [17] ZHAO Yian, LV Wenyu, XU Shangliang, et al. DETRs beat YOLOs on real-time object detection[C]. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 16965–16974. doi: 10.1109/CVPR52733.2024.01605.
    [18] DAI Xiyang, CHEN Yinpeng, XIAO Bin, et al. Dynamic head: Unifying object detection heads with attentions[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 7369–7378. doi: 10.1109/CVPR46437.2021.00729.
    [19] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C] 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 9626–9635. doi: 10.1109/ICCV.2019.00972.
    [20] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.(查阅网上资料,本条文献与第6条文献重复,请确认).
    [21] WANG Xinjiang, ZHANG Shilong, YU Zhuoran, et al. Scale-equalizing pyramid convolution for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 13356–13365. doi: 10.1109/CVPR42600.2020.01337.
    [22] ZHANG Hao and ZHANG Shuaijie. Shape-IoU: More accurate metric considering bounding box shape and scale[EB/OL]. https://arxiv.org/abs/2312.17663, 2023.
    [23] ZHANG Hao, XU Cong, and ZHANG Shuaijie. Inner-IoU: More effective intersection over union loss with auxiliary bounding box[EB/OL]. https://arxiv.org/abs/2311.02877, 2023.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  3
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-09-03
  • 网络出版日期:  2025-09-09

目录

    /

    返回文章
    返回