高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂地形MIMO雷达低仰角估计方法

王佳佳 郭瑞 刘旗 张月 陈曾平

王佳佳, 郭瑞, 刘旗, 张月, 陈曾平. 复杂地形MIMO雷达低仰角估计方法[J]. 电子与信息学报. doi: 10.11999/JEIT250236
引用本文: 王佳佳, 郭瑞, 刘旗, 张月, 陈曾平. 复杂地形MIMO雷达低仰角估计方法[J]. 电子与信息学报. doi: 10.11999/JEIT250236
WANG Jiajia, GUO Rui, LIU Qi, ZHANG Yue, CHEN Zengping. Low Elevation Angle Estimation Method for MIMO Radar in Complex Terrain[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250236
Citation: WANG Jiajia, GUO Rui, LIU Qi, ZHANG Yue, CHEN Zengping. Low Elevation Angle Estimation Method for MIMO Radar in Complex Terrain[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250236

复杂地形MIMO雷达低仰角估计方法

doi: 10.11999/JEIT250236 cstr: 32379.14.JEIT250236
基金项目: 国家自然科学基金(U2133216),广东省科技厅先进智能感知技术重点实验室科技规划项目(2023B1212060024),广东省科技技术项目(2019ZT08X751),深圳市科技计划资助(KQTD20190929172704911)
详细信息
    作者简介:

    王佳佳:女,硕士生,研究方向为阵列信号处理

    郭瑞:男,副教授,研究方向为数字信号处理、新体制雷达

    刘旗:男,博士生,研究方向为阵列信号处理

    张月:男,副教授,研究方向为雷达信号处理、智能目标识别

    陈曾平:男,教授,研究方向为空间态势感知、软件化雷达探测

    通讯作者:

    郭瑞 guor29@mail.sysu.edu.cn

  • 中图分类号: TN958

Low Elevation Angle Estimation Method for MIMO Radar in Complex Terrain

Funds: the National Natural Science Foundation of China (U2133216), Science and Technology Planning Project of Key Laboratory of Advanced IntelliSense Technology, Guangdong Science and Technology Department (2023B1212060024), Guangdong Provincial Science and Technology Program (2019ZT08X751), Shenzhen Science and Technology Program (KQTD20190929172704911)
  • 摘要: 针对复杂地形多输入多输出(MIMO)雷达低仰角估计算法存在的孔径利用效率与计算复杂度的矛盾问题,该文提出了一种张量框架下的两步估计方法。首先构建三维张量观测模型以完整保留信号的多维结构特征,通过高阶奇异值分解(HOSVD)得到张量信号子空间并对其去冗余。然后采用稀疏贝叶斯学习(SBL)方法快速确定目标仰角和多径角度的初始估计。最后根据初始值和完整的张量信号子空间,通过交替迭代广义多重信号分类法(GMUSIC)获得目标仰角的精确估计。该方法适用于复杂地形,并且完整利用了阵列孔径,在估计性能和计算复杂度之间实现了良好的平衡。仿真实验和实测数据验证了该方法的有效性。
  • 图  1  复杂地形单基地MIMO雷达多径传播模型

    图  2  RMSE随SNR的变化(单反射路径)

    图  3  RMSE随快拍数的变化(单反射路径)

    图  4  RMSE随SNR的变化(双反射路径)

    图  5  RMSE随快拍数的变化(双反射路径)

    图  6  RMSE随多径条数的变化

    图  7  实验场景

    图  8  估计仰角随CPI个数的变化

    图  9  估计误差随CPI个数的变化

    图  10  各算法估计误差在不同角度误差区间的占比

    表  1  SNR变化下5种算法的平均运行时间和计算复杂度

    算法搜索间隔(°)平均耗时(s)计算复杂度
    本文算法3.2节为0.10°,3.3节为0.01°0.2769$O\left\{ {{M^4} + {M^2}L + I\max (M{G^2},{M^3}) + \ell (8{M^4} + 24{M^2} + 147)} \right\}$
    APML0.013.5360$O\left\{ {L{M^4} + \mu ({M^6} + 4{M^4} + 32{M^2} + 64)} \right\}$
    APMUSIC0.010.4568$ O\left\{ {3{M^6} + (L + 4\mu + 4\mu F + 8F{H_{\text{p}}}){M^4} + (4\mu + 16F{H_{\text{p}}}){M^2}} \right\} $
    tensor SBL0.100.2189$O\left\{ {{M^4} + {M^2}L + I\max (M{G^2},{M^3})} \right\}$
    rank1-SBL0.100.1559$O\left\{ {{M^2}{L^2} + {M^3} + I\max (M{G^2},{M^3})} \right\}$
    下载: 导出CSV
  • [1] MA Jianjun, MA Hui, LIU Hongwei, et al. A novel DOA estimation for low-elevation target method based on multiscattering center equivalent model[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 3501605. doi: 10.1109/LGRS.2023.3242977.
    [2] LIU Qi, GUO Rui, WANG Bo, et al. Direct altitude estimation of low-elevation target for Bistatic holographic staring radar based on Coprime array[J]. IEEE Sensors Journal, 2024, 24(11): 17926–17940. doi: 10.1109/JSEN.2024.3387534.
    [3] PILLAI S U and KWON B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(1): 8–15. doi: 10.1109/29.17496.
    [4] CADZOW J A, KIM Y S, and SHIUE D C. General direction-of-arrival estimation: A signal subspace approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(1): 31–47. doi: 10.1109/7.18659.
    [5] ZOLTOWSKI M and HABER F. A vector space approach to direction finding in a coherent multipath environment[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(9): 1069–1079. doi: 10.1109/TAP.1986.1143956.
    [6] LIU Yuan, LIU Hongwei, XIA Xianggen, et al. Projection techniques for altitude estimation over complex multipath condition-based VHF radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2362–2375. doi: 10.1109/JSTARS.2018.2835448.
    [7] CHOI Y H. Alternating projection for maximum-likelihood source localization using eigendecomposition[J]. IEEE Signal Processing Letters, 1999, 6(4): 73–75. doi: 10.1109/97.752057.
    [8] BOSSE E, TURNER R M, and LECOURS M. Tracking swerling fluctuating targets at low altitude over the sea[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(5): 806–822. doi: 10.1109/7.97326.
    [9] WU Jianqi, ZHU Wei, and CHEN Xiaobai. Compressed sensing techniques for altitude estimation in multipath conditions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1891–1900. doi: 10.1109/TAES.2015.130841.
    [10] LIU Yuan, LIU Hongwei, WANG Lu, et al. Target localization in high-coherence multipath environment based on low-rank decomposition and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6197–6209. doi: 10.1109/TGRS.2020.2975218.
    [11] YANG Zai, LI Jian, STOICA P, et al. Sparse methods for direction-of-arrival estimation[M]. CHELLAPPA R and THEODORIDIS S. Academic Press Library in Signal Processing. Amsterdam: Elsevier, 2018: 509–581. doi: 10.1016/B978-0-12-811887-0.00011-0.
    [12] 陈胜, 赵永波, 庞晓娇, 等. 米波MIMO雷达波束空间精确最大似然算法[J]. 系统工程与电子技术, 2022, 44(5): 1520–1526. doi: 10.12305/j.issn.1001-506X.2022.05.12.

    CHEN Sheng, ZHAO Yongbo, PANG Xiaojiao, et al. Beam space refined maximum likelihood algorithm for VHF MIMO radar[J]. Systems Engineering and Electronics, 2022, 44(5): 1520–1526. doi: 10.12305/j.issn.1001-506X.2022.05.12.
    [13] TANG Derui, ZHAO Yongbo, NIU Ben, et al. Bistatic MIMO radar height estimation method based on adaptive beam-space RML data fusion[J]. Digital Signal Processing, 2024, 145: 104346. doi: 10.1016/j.dsp.2023.104346.
    [14] CHEN Sheng, ZHAO Yongbo, and HU Yili. Beamspace phase solving algorithm for elevation angle estimation[J]. IEEE Signal Processing Letters, 2022, 29: 742–746. doi: 10.1109/LSP.2022.3154686.
    [15] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5835–5848. doi: 10.1109/TVT.2019.2913437.
    [16] LIU Yuan, JIU Bo, XIA Xianggen, et al. Height measurement of low-angle target using MIMO radar under multipath interference[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 808–818. doi: 10.1109/TAES.2017.2767919.
    [17] TETI J G. Wide-band airborne radar operating considerations for low-altitude surveillance in the presence of specular multipath[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(2): 176–191. doi: 10.1109/8.833067.
    [18] WANG Xianpeng, GUO Yuehao, WEN Fangping, et al. EMVS-MIMO radar with sparse Rx geometry: Tensor modeling and 2-D direction finding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8062–8075. doi: 10.1109/TAES.2023.3297570.
    [19] SOKAL B, FAZAL-E-ASIM, and DE ALMEIDA A L F. Higher-order tensor-based joint transmit/receive beamforming and IRS optimization[C]. IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Herradura, Costa Rica, 2023: 216–220, doi: 10.1109/CAMSAP58249.2023.10403475.
    [20] LIU Qi, WANG Xianpeng, HUANG Mengxing, et al. DOA and range estimation for FDA-MIMO radar with sparse Bayesian learning[J]. Remote Sensing, 2021, 13(13): 2553. doi: 10.3390/rs13132553.
    [21] YANG Zai, XIE Lihua, and ZHANG Cishen. Off-grid direction of arrival estimation using sparse Bayesian inference[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 38–43. doi: 10.1109/TSP.2012.2222378.
    [22] 王琦森, 余华, 李杰, 等. 基于稀疏贝叶斯学习的空间紧邻信号DOA估计算法[J]. 电子与信息学报, 2021, 43(3): 708–716. doi: 10.11999/JEIT200656.

    WANG Qisen, YU Hua, LI Jie, et al. Sparse Bayesian learning based algorithm for DOA estimation of closely spaced signals[J]. Journal of Electronics & Information Technology, 2021, 43(3): 708–716. doi: 10.11999/JEIT200656.
    [23] JIN Yi, HE Di, WEI Shuang, et al. Off-grid DOA estimation method based on sparse Bayesian learning with clustered structural-aware prior information[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5469–5483. doi: 10.1109/TVT.2023.3335959.
    [24] HUANG Chenglin, TIAN Zengshan, LIU Kaikai, et al. DoA estimation of nonuniform noise sources via off-grid SBL in a noncooperative mode using a single RF link[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 73(3): 1381–1395. doi: 10.1109/TMTT.2024.3464694.
    [25] 张文俊, 赵永波, 张守宏. 广义MUSIC算法在米波雷达测高中的应用及其改进[J]. 电子与信息学报, 2007, 29(2): 387–390. doi: 10.3724/SP.J.1146.2005.00859.

    ZHANG Wenjun, ZHAO Yongbo, and ZHANG Shouhong. Altitude measurement of meter-wave radar using the general MUSIC algorithm and its improvement[J]. Journal of Electronics & Information Technology, 2007, 29(2): 387–390. doi: 10.3724/SP.J.1146.2005.00859.
    [26] ZHANG Yufeng, YE Zhongfu, and LIU Chao. Estimation of fading coefficients in the presence of multipath propagation[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 2220–2224. doi: 10.1109/TAP.2009.2021973.
    [27] TAN Jun and NIE Zaiping. Cramer-Rao bound of low angle estimation for VHF monostatic MIMO radar[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 158–163. doi: 10.1109/RADAR.2018.8378549.
    [28] 郭瑞, 张月, 田彪, 等. 全息凝视雷达系统技术与发展应用综述[J]. 雷达学报, 2023, 12(2): 389–411. doi: 10.12000/JR22153.

    GUO Rui, ZHANG Yue, TIAN Biao, et al. Review of the technology, development and applications of holographic staring radar[J]. Journal of Radars, 2023, 12(2): 389–411. doi: 10.12000/JR22153.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-07
  • 修回日期:  2025-09-03
  • 网络出版日期:  2025-09-09

目录

    /

    返回文章
    返回