高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用下采样处理盲源分离的抗间歇采样转发干扰方法

刘一品 于雷 位寅生

刘一品, 于雷, 位寅生. 利用下采样处理盲源分离的抗间歇采样转发干扰方法[J]. 电子与信息学报, 2025, 47(8): 2521-2534. doi: 10.11999/JEIT250193
引用本文: 刘一品, 于雷, 位寅生. 利用下采样处理盲源分离的抗间歇采样转发干扰方法[J]. 电子与信息学报, 2025, 47(8): 2521-2534. doi: 10.11999/JEIT250193
LIU Yipin, YU Lei, WEI Yinsheng. Anti-interrupted Sampling Repeater Jamming Method Based on down-sampling Processing Blind Source Separation[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2521-2534. doi: 10.11999/JEIT250193
Citation: LIU Yipin, YU Lei, WEI Yinsheng. Anti-interrupted Sampling Repeater Jamming Method Based on down-sampling Processing Blind Source Separation[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2521-2534. doi: 10.11999/JEIT250193

利用下采样处理盲源分离的抗间歇采样转发干扰方法

doi: 10.11999/JEIT250193 cstr: 32379.14.JEIT250193
详细信息
    作者简介:

    刘一品:男,博士生,研究方向为雷达干扰抑制、盲源分离

    于雷:男,研究员,研究方向为雷达信号处理、抗干扰抗杂波、波形设计

    位寅生:男,教授,研究方向为对海新体制雷达系统探测技术、雷达抗干扰

    通讯作者:

    于雷 yu.lei@hit.edu.cn

  • 中图分类号: TN974

Anti-interrupted Sampling Repeater Jamming Method Based on down-sampling Processing Blind Source Separation

  • 摘要: 间歇采样转发干扰(ISRJ)作为一种新型相干干扰,兼具压制和欺骗效果,对雷达探测造成了极大的威胁。随着数字射频存储器的发展,其轻量化特性使得目标能够携带ISRJ干扰机产生自卫干扰,因此传统的盲源分离等空域抗干扰方法难以进行有效抑制。该文针对间歇采样转发干扰抑制问题,提出了一种基于下采样处理盲源分离的抗间歇采样转发干扰方法。首先对单路含干扰的回波信号进行解线频调处理,并对其进行下采样,通过改变下采样保留位置得到多路下采样输出信号,其中的干扰和目标成分满足盲源分离的线性混合模型;随后对多路下采样输出进行盲源分离,从而分离出干扰分量和目标分量,并通过脉冲压缩和目标检测输出目标回波信号,达到抗干扰效果。仿真结果表明,该方法在自卫干扰场景下,能够有效抑制直接转发、重复转发以及频移转发等多种ISRJ类型;此外无需对ISRJ参数进行高精度估计,受干扰能量和切片宽度影响更小,更有利于工程应用。
  • 图  1  3种典型ISRJ示意图

    图  2  回波信号解线频调示意图

    图  3  干扰抑制方法原理图

    图  4  单频信号下采样示意图

    图  5  直接转发ISRJ抑制效果

    图  6  频移转发ISRJ抑制效果

    图  7  重复转发ISRJ抑制效果

    图  8  抗干扰效果随干扰方位角变化

    图  9  抗干扰效果随ISRJ切片宽度变化

    图  10  抗干扰效果随输入SIR变化

    表  1  雷达仿真参数

    参数参数值
    脉冲宽度 (μs)10
    脉冲重复周期 (μs)40
    带宽 (MHz)60
    采样率 (MHz)300
    目标位置 (m)3000
    信噪比 (dB)10
    下载: 导出CSV
  • [1] ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1300. doi: 10.1109/TAES.2013.6494414.
    [2] FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958.
    [3] HANBALI S B S. Technique to counter improved active echo cancellation based on ISRJ with frequency shifting[J]. IEEE Sensors Journal, 2019, 19(20): 9194–9199. doi: 10.1109/JSEN.2019.2925004.
    [4] WU Qihua, ZHAO Feng, AI Xiaofeng, et al. Two-dimensional blanket jamming against ISAR using nonperiodic ISRJ[J]. IEEE Sensors Journal, 2019, 19(11): 4031–4038. doi: 10.1109/JSEN.2019.2897363.
    [5] 吴传章, 陈伯孝. 间歇非均匀采样转发干扰产生方法研究[J]. 系统工程与电子技术, 2021, 43(1): 1–10. doi: 10.3969/j.issn.1001-506X.2021.01.01.

    WU Chuanzhang and CHEN Boxiao. Study on generating method of interrupted non-uniform sampling repeater jamming[J]. Systems Engineering and Electronics, 2021, 43(1): 1–10. doi: 10.3969/j.issn.1001-506X.2021.01.01.
    [6] LIU Zhidong, ZHANG Qun, LI Guangming, et al. Improved blanket jamming against ISAR based on nonperiodic interrupted sampling modulation[J]. IEEE Sensors Journal, 2021, 21(1): 430–437. doi: 10.1109/JSEN.2020.3014650.
    [7] RIIHONEN T, KORPI D, RANTULA O, et al. Inband full-duplex radio transceivers: A paradigm shift in tactical communications and electronic warfare?[J]. IEEE Communications Magazine, 2017, 55(10): 30–36. doi: 10.1109/MCOM.2017.1700220.
    [8] XIAO Jie, WEI Xizhang, and SUN Jia. Interrupted-sampling multi-strategy forwarding jamming with amplitude constraints based on simultaneous transmission and reception technology[J]. Digital Signal Processing, 2024, 147: 104416. doi: 10.1016/j.dsp.2024.104416.
    [9] 余涛, 周正春, 杜小勇, 等. 一种基于完全互补码波形设计的抗间歇式采样转发干扰方法[J]. 电子与信息学报, 2023, 45(11): 3896–3905. doi: 10.11999/JEIT230331.

    YU Tao, ZHOU Zhengchun, DU Xiaoyong, et al. An anti-interrupted sampling repeater jamming method based on complete complementary code waveform design[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3896–3905. doi: 10.11999/JEIT230331.
    [10] DAI Huahua, ZHAO Yingxiao, SU Hanning, et al. Research on an intra-pulse orthogonal waveform and methods resisting interrupted-sampling repeater jamming within the same frequency band[J]. Remote Sensing, 2023, 15(14): 3673. doi: 10.3390/rs15143673.
    [11] GUO Tai, ZHAN Haihong, SU Xingde, et al. Anti‐interrupted sampling repeater jamming method for random pulse repetition interval and intra‐pulse frequency agile radar[J]. IET Radar, Sonar & Navigation, 2023, 17(12): 1796–1811. doi: 10.1049/rsn2.12465.
    [12] WANG Xiaoge, LI Binbin, LIU Weijian, et al. Anti-interrupted sampling repeater jamming based on intra-pulse frequency modulation slope agile radar waveform joint FrFT[J]. Digital Signal Processing, 2024, 147: 104418. doi: 10.1016/j.dsp.2024.104418.
    [13] ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27: 1610–1614. doi: 10.1109/LSP.2020.3021667.
    [14] 王福来, 庞晨, 殷加鹏, 等. 一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法[J]. 雷达学报, 2022, 11(2): 278–288. doi: 10.12000/JR22020.

    WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020.
    [15] WANG Fulai, LI Nanjun, PANG Chen, et al. Complementary sequences and receiving filters design for suppressing interrupted sampling repeater jamming[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4022305. doi: 10.1109/LGRS.2022.3156164.
    [16] ZHANG Yang, YU Lei, and WEI Yinsheng. Interrupted sampling repeater jamming countermeasure technology based on random interpulse frequency coding LFM signal[J]. Digital Signal Processing, 2022, 131: 103755. doi: 10.1016/j.dsp.2022.103755.
    [17] WEI Song, FANG Yuyuan, SONG Yuxiao, et al. Joint jam perception and adaptive waveform optimization for anti-interrupted sampling repeater jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 1129–1147. doi: 10.1109/TAES.2023.3334255.
    [18] YUAN Hui, WANG Chunyang, LI Xin, et al. A method against interrupted-sampling repeater jamming based on energy function detection and band-pass filtering[J]. International Journal of Antennas and Propagation, 2017, 2017: 6759169. doi: 10.1155/2017/6759169.
    [19] CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted‐sampling repeater jamming based on time‐frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658.
    [20] WANG Zijian, LI Jiamu, YU Wenbo, et al. Energy function‐guided histogram analysis for interrupted sampling repeater jamming suppression[J]. Electronics Letters, 2023, 59(7): e12778. doi: 10.1049/ell2.12778.
    [21] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM‐based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114.
    [22] LU Lu and GAO Meiguo. An improved sliding matched filter method for interrupted sampling repeater jamming suppression based on jamming reconstruction[J]. IEEE Sensors Journal, 2022, 22(10): 9675–9684. doi: 10.1109/JSEN.2022.3159561.
    [23] WU Wenzhen, ZOU Jiangwei, CHEN Jian, et al. False-target recognition against interrupted-sampling repeater jamming based on integration decomposition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2979–2991. doi: 10.1109/TAES.2021.3068443.
    [24] CHEN Xiaoying and CHEN Baixiao. Interrupted-sampling repeater jamming suppression based on iterative decomposition[J]. Digital Signal Processing, 2023, 138: 104059. doi: 10.1016/j.dsp.2023.104059.
    [25] MENG Yunyun, YU Lei, and WEI Yinsheng. Interrupted sampling repeater jamming suppression based on multiple extended complex-valued convolutional auto-encoders[J]. IET Radar, Sonar & Navigation, 2024, 18(8): 1274–1290. doi: 10.1049/rsn2.12568.
    [26] HUANG Quan, WEI Shaopeng, and ZHANG Lei. Interpretable ADMM-CSNet for interrupted sampling repeater jamming suppression[J]. Digital Signal Processing, 2025, 156: 104850. doi: 10.1016/j.dsp.2024.104850.
    [27] ZHANG Yang, WEI Yinsheng, and YU Lei. Interrupted sampling repeater jamming recognition and suppression based on phase-coded signal processing[J]. Signal Processing, 2022, 198: 108596. doi: 10.1016/j.sigpro.2022.108596.
    [28] DUAN Jia, ZHANG Lei, WU Yifeng, et al. Interrupted-sampling repeater jamming suppression with one-dimensional semi-parametric signal decomposition[J]. Digital Signal Processing, 2022, 127: 103546. doi: 10.1016/j.dsp.2022.103546.
    [29] HUANG Quan, WEI Shaopeng, and ZHANG Lei. Robust adaptive time-frequency filtering for frequency shift jamming suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 7963–7976. doi: 10.1109/TAES.2023.3297559.
    [30] TIAN Dezhi, WANG Changjie, REN Wei, et al. ECCM scheme for countering main-lobe interrupted sampling repeater jamming via signal reconstruction and mismatched filtering[J]. IEEE Sensors Journal, 2023, 23(12): 13261–13271. doi: 10.1109/JSEN.2023.3271116.
    [31] 于雷, 刘一品, 位寅生. 基于信干噪比最大化的盲提取抗主瓣干扰方法[J]. 系统工程与电子技术, 2024, 46(9): 2968–2979. doi: 10.12305/j.issn.1001-506X.2024.09.09.

    YU Lei, LIU Yipin, and WEI Yinsheng. Anti-mainlobe jamming method via blind extraction based on maximizing SINR[J]. Systems Engineering and Electronics, 2024, 46(9): 2968–2979. doi: 10.12305/j.issn.1001-506X.2024.09.09.
    [32] HINDERER S. Blind source separation of radar signals in time domain using deep learning[C]. Proceedings of 2022 23rd International Radar Symposium (IRS), Gdansk, Poland, 2022: 486–491. doi: 10.23919/IRS54158.2022.9904990.
    [33] LUO Weilin, JIN Hongbin, LI Hao, et al. Radar main-lobe jamming suppression based on adaptive opposite fireworks algorithm[J]. IEEE Open Journal of Antennas and Propagation, 2021, 2: 138–150. doi: 10.1109/OJAP.2020.3036878.
    [34] LEI Zhenshuo, QU Qizhe, CHEN Hao, et al. Mainlobe jamming suppression with space–time multichannel via blind source separation[J]. IEEE Sensors Journal, 2023, 23(15): 17042–17053. doi: 10.1109/JSEN.2023.3278709.
    [35] GE Mengmeng, CUI Guolong, YU Xianxiang, et al. Mainlobe jamming suppression with polarimetric multi-channel radar via independent component analysis[J]. Digital Signal Processing, 2020, 106: 102806. doi: 10.1016/j.dsp.2020.102806.
    [36] 高霞, 全英汇, 李亚超, 等. 基于BSS的FDA-MIMO雷达主瓣欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2020, 42(9): 1927–1934. doi: 10.3969/j.issn.1001-506X.2020.09.07.

    GAO Xia, QUAN Yinghui, LI Yachao, et al. Main-lobe deceptive jamming suppression with FDA-MIMO radar based on BSS[J]. Systems Engineering and Electronics, 2020, 42(9): 1927–1934. doi: 10.3969/j.issn.1001-506X.2020.09.07.
    [37] WAN Pengfei, LIAO Guisheng, XU Jingwei, et al. SMSP mainlobe jamming suppression with FDA-MIMO radar based on FastICA algorithm[J]. Sensors, 2023, 23(12): 5619. doi: 10.3390/s23125619.
    [38] CARDOSO J F and SOULOUMIAC A. Blind beamforming for non-Gaussian signals[J]. IEE Proceedings F (Radar and Signal Processing), 1993, 140(6): 362–370. doi: 10.1049/ip-f-2.1993.0054.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  73
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-07-17
  • 网络出版日期:  2025-07-25
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回