Signal Sorting Method Based on Multi-station Time Difference and Dirichlet Process Mixture Model
-
摘要: 现有的多站时差信号分选方法依赖辐射源数目或脉冲参数测量误差等先验信息,并且无法对配对失败的脉冲进行准确分选。针对这一问题,该文提出一种Dirichlet过程混合模型(DPMM)驱动的多站时差分选方法。该方法首先引入时差窗与多参数约束条件,实现大部分脉冲的成功配对,同时部分脉冲会由于脉冲丢失与噪声干扰而配对失败;接着,采用DPMM对配对成功后获得的到达时差信息进行聚类分析,从而实现对配对成功脉冲的分选,并构建雷达脉冲集合;最后,通过计算配对失败脉冲相对于脉冲集合的归属度,完成对配对失败脉冲的归类。仿真结果表明,与现有方法相比,该方法无需事先确定辐射源数目或参数测量误差等参数,且在脉冲丢失和干扰严重的情况下,仍能保持较高的分选准确率。
-
关键词:
- 信号分选 /
- 脉冲配对 /
- 到达时差 /
- Dirichlet过程混合模型
Abstract:Objective Signal sorting is a crucial technology in electronic reconnaissance that enables the de-interleaving of mixed pulse sequences emitted by multiple radar radiation sources, thereby supporting military decision-making. With the rapid advancement of electronic technology, multi-station cooperative signal sorting has received increasing attention. However, existing multi-station signal sorting methods depend heavily on manually selected parameters, which limits adaptability. Moreover, in complex environments with pulse loss and noise interference, conventional methods struggle to process unpaired pulses effectively, reducing the accuracy and stability of sorting. To address these challenges, this study applies the Dirichlet Process Mixture Model (DPMM) to multi-station cooperative signal sorting. The proposed approach enables adaptive sorting even when the number of radiation sources is unknown or measurement errors exist, thereby improving flexibility and adaptability. Furthermore, it can effectively classify unpaired pulses caused by pulse loss or noise, enhancing the robustness and reliability of sorting. This research provides a novel strategy for signal sorting in complex electromagnetic environments and holds promising application value in radar signal processing. Methods In multi-station cooperative signal sorting, the spatial distribution of multiple receiving stations detecting the same radar signal makes efficient and accurate signal pairing and classification a core challenge. To address this issue, a multi-station cooperative signal sorting method based on the DPMM is proposed. The process comprises three stages: pulse pairing, time-difference clustering and sorting, and mismatched pulse classification. In the pulse pairing stage, identical pulses originating from the same radiation source are identified from the sequences intercepted by each receiving station. To ensure accurate pairing, a dual-constraint strategy is adopted, combining a time-difference window with multi-parameter matching. Successfully paired pulses are then constructed into a time-difference vector set, which provides the data foundation for the subsequent clustering and sorting stage. In the time-difference clustering and sorting stage, DPMM is employed to cluster the time-difference vector set. DPMM adaptively determines the number of clusters to model the data structure, enabling the system to infer the optimal cluster count. Gibbs sampling is used to optimize model parameters, further enhancing clustering robustness. Based on the clustering results, radar pulse sets are constructed, achieving signal sorting across multiple radiation sources. In the mismatched pulse classification stage, unpaired pulses caused by noise interference or pulse loss during transmission are further processed. DPMM is applied to fit radar pulse parameter vectors, including pulse width, radio frequency, and bandwidth. The affiliation degree of each mismatched pulse relative to the radar pulse sets is then calculated. Pulses with affiliation degrees exceeding a predefined threshold are merged into the corresponding pulse set, whereas those below the threshold are classified as anomalous pulses, likely due to interference or noise, and are discarded. This method enhances the adaptability and robustness of multi-station cooperative signal sorting and provides an effective solution for complex electromagnetic environments. Results and Discussions In the experimental validation, radar pulse data are generated through simulation to evaluate the effectiveness of the proposed method. Compared with traditional multi-station cooperative signal sorting approaches, the method achieves high-precision sorting without requiring prior knowledge of the number of radiation sources or parameter measurement errors, thereby demonstrating strong adaptability and practicality. To comprehensively assess performance in complex environments, simulations are conducted to analyze sorting capability under varying measurement errors, pulse loss rates, and interference rates. The final sorting results are summarized in ( Table. 3 ). The results indicate that even in the presence of noise interference and data loss, most radar pulses are accurately identified, with only a small fraction misclassified as interference signals. The final sorting accuracy reaches 98.8%, confirming the robustness and stability of the method against pulse loss, noise, and other uncertainties. To further validate its superiority, the method is compared with other algorithms under different conditions. Sorting accuracy under different Time of Arrival (TOA) measurement errors (Fig. 6 ) shows that stable performance is maintained even under severe noise interference, reflecting strong noise resistance. Further analyses of sorting accuracy under different pulse loss rates and interference rates (Figs. 7 and8 ) demonstrate that higher efficiency and stability are achieved in handling unpaired pulses, and pulses that fail to be paired are more accurately classified. The sorting accuracy of different algorithms in various scenarios (Fig. 9 ) further confirms that the method performs more consistently in complex environments, indicating higher adaptability. Overall, the method adapts well to diverse application scenarios and provides efficient, stable, and reliable signal sorting for multi-station cooperative electronic reconnaissance tasks.Conclusions This study proposes a multi-station cooperative signal sorting method based on the DPMM to address the limitations of traditional approaches, which rely heavily on prior information and perform poorly in processing unpaired pulses. By applying DPMM for adaptive clustering of time-difference information, the proposed method avoids sorting errors caused by improper manual parameter settings and effectively classifies unpaired pulses based on radar pulse parameter characteristics. Simulation results show that this method not only improves the accuracy and stability of multi-station cooperative signal sorting but also maintains high sorting performance even when the number of radiation sources is unknown or measurement errors are present, highlighting its engineering application value. Future research may extend this approach to dynamic electromagnetic environments and adaptive real-time processing to meet the demands of more complex electronic reconnaissance tasks. -
表 1 场景1中雷达参数表
雷达序号 位置坐标(km) PRI(µs) PW(µs) CF(MHz) BW(MHz) 发射脉冲数 E1 ($ - $6.0, 0) 350抖动 11固定 2 500固定 7.8/7.9跳变 185 E2 ($ - $4.7, 1.7) 420/610参差 10/10.5跳变 2 400固定 7固定 164 E3 ($ - $3.8, 3.2) 550固定 10.3固定 2 200/2 600跳变 6/8跳变 100 E4 ($ - $2.5, 4.3) 1 240~1 300滑变 12.3固定 1 800固定 7.8/6.5跳变 90 E5 ($ - $0.9, 5.5) 1 630固定 10固定 2 450~2 550滑变 8.5固定 74 E6 (1.8, 4.5) 2 000/2 250/2 500参差 7.8/8/9.2跳变 2 800固定 5固定 61 E7 (2.5, $ - $4.0) 5 000抖动 9.7固定 600/750跳变 4.9/5.6跳变 56 E8 (4.6, $ - $1.8) 7 000抖动 9固定 1 500固定 3.2固定 42 E9 (6.0, 0) 10 000固定 7.5固定 2 100~2 200滑变 5.4固定 30 总数 802 表 2 接收站实际接收脉冲数
雷达序号 接收站1 接收站2 接收站3 E1 168 160 141 E2 149 138 136 E3 91 92 82 E4 83 78 78 E5 67 63 57 E6 56 53 52 E7 53 50 46 E8 40 35 40 E9 28 29 24 干扰脉冲 147 104 66 接收脉冲总数 882 802 722 配对成功脉冲 518 518 518 表 3 基于Dirichlet过程混合模型的多站时差分选结果
雷达
序号接收站1 接收站2 接收站3 正确
分选脉冲漏选
脉冲正确
分选脉冲漏选
脉冲正确
分选脉冲漏选
脉冲E1 166 2 158 2 141 0 E2 148 1 137 1 133 3 E3 91 0 90 2 82 0 E4 83 0 76 2 78 0 E5 65 2 60 3 56 1 E6 56 0 53 0 50 2 E7 51 2 49 1 45 1 E8 39 1 34 1 40 0 E9 27 1 28 1 24 0 干扰脉冲 156 117 73 分选正确率 98.8% 表 4 场景2中雷达参数表
雷达序号 位置坐标(km) PRI(µs) PW(µs) CF(MHz) BW(MHz) 发射脉冲数 E1 ($ - $6.0, 0) 580固定 10.3固定 2 200~2 600滑变 6~8滑变 175 E2 ($ - $4.8, 1.8) 400/600参差 10/10.5跳变 2 400~2 500滑变 8.5固定 156 E3 ($ - $3.5, 3.5) 1 000~1 200滑变 10.1固定 2 250/2 500跳变 7/7.8跳变 103 E4 ($ - $2.4, 4.5) 1 240~1 300滑变 9~9.5滑变 1 800固定 6.5/7.5跳变 94 E5 ($ - $1.3, 5.5) 1 500固定 9.2固定 1 500~2 000滑变 7固定 75 E6 (3.5, $ - $4.5) 1 800/2 000/2 200参差 7.8/8/9.2跳变 700固定 4.8~5.4滑变 60 E7 (2.5, $ - $4.0) 3 000抖动 8.1固定 600/750跳变 4.5/5跳变 58 E8 (4.6, $ - $1.5) 5 000抖动 8~8.5滑变 2 150固定 4.5固定 42 E9 (0, $ - $6.0) 6 000固定 7.5固定 2 100~2 200滑变 5~5.6滑变 30 总数 793 表 5 场景3中雷达参数表
雷达序号 位置坐标(km) 模式 PRI(µs) PW(µs) CF(MHz) BW(MHz) 发射脉冲数 E1 ($ - $6.0, 0) 模式1 550固定 10固定 2 600~2 800滑变 8固定 216 模式2 450/600参差 10/10.8跳变 2 800~3 000滑变 8.5固定 210 E2 ($ - $4.0, 2.0) 模式1 1 000~1 200滑变 8.5~9滑变 2 400/2 600跳变 7.3/7.8跳变 180 模式2 1 240~1 300滑变 9~9.5滑变 2 500固定 6.5固定 175 E3 ($ - $3.8, $ - $3.2) 模式1 1 600固定 7.5~8.3滑变 1 100~1 300滑变 5.2/5.6跳变 160 E4 ($ - $2.5, 4.3) 模式1 2 000/2 400参差 7.5固定 600固定 4.5~5滑变 155 模式2 2 000固定 7~7.5滑变 750/900跳变 5固定 150 模式3 2 400固定 8固定 1 000~1 200滑变 5.4固定 145 E5 (2.5, $ - $4.0) 模式1 2 800抖动 8.5固定 650/780跳变 4.8/5.5跳变 125 E6 (3.4, $ - $4.4) 模式1 2 600固定 9.3固定 1 600~1 800滑变 4固定 120 模式2 2 500/2 700参差 9.8固定 1 700固定 4.5固定 110 E7 (2.7, $ - $4.0) 模式1 1 700~1 900滑变 12/12.5跳变 3 500/3 600跳变 10/10.5跳变 100 模式2 1 900~2 100滑变 12.5固定 3 600固定 10.5固定 98 E8 (4.5, $ - $1.5) 模式1 2 500抖动 11.8固定 3 800~4 000滑变 10.8固定 70 E9 (6.0, $ - $6.0) 模式1 2 500~3 000滑变 11固定 2 600固定 8.5~9滑变 60 模式2 3 000固定 11~11.5滑变 2 600/2 900跳变 9.0固定 68 模式3 4 000固定 11.5固定 3 000~3 200滑变 9.5~10滑变 55 总数 2 197 -
[1] XIANG Haoran, SHEN Furao, and ZHAO Jian. Deep TOA mask-based recursive radar pulse deinterleaving[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 989–1006. doi: 10.1109/TAES.2022.3193948. [2] ZHOU Zixiang, FU Xiongjun, DONG Jian, et al. Radar signal sorting with multiple self-attention coupling mechanism based transformer network[J]. IEEE Signal Processing Letters, 2024, 31: 1765–1769. doi: 10.1109/LSP.2024.3421948. [3] 陈涛, 邱宝传, 肖易寒, 等. 基于点云分割网络的雷达信号分选方法[J]. 电子与信息学报, 2024, 46(4): 1391–1398. doi: 10.11999/JEIT230622.CHEN Tao, QIU Baochuan, XIAO Yihan, et al. The radar signal deinterleaving method base on point cloud segmentation network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1391–1398. doi: 10.11999/JEIT230622. [4] MU Haiyue and QU Zhiyu. Three-dimensional DBSCAN radar radial source sorting algorithm based on TDOA and DOA information[C]. Proceedings of 2023 International Conference on Intelligent Communication and Networking, Changzhou, China, 2023: 154–158. doi: 10.1109/ICN60549.2023.10426191. [5] 刘智鑫, 赵拥军. 约束准则下扩展时差直方图脉冲分选配对方法[J]. 西安电子科技大学学报, 2019, 46(6): 102–111. doi: 10.19665/j.issn1001-2400.2019.06.015.LIU Zhixin and ZHAO Yongjun. Pulse sorting and pairing based on the constrained extended TDOA histogram[J]. Journal of Xidian University, 2019, 46(6): 102–111. doi: 10.19665/j.issn1001-2400.2019.06.015. [6] 马爽, 吴海斌, 柳征, 等. 基于递归扩展直方图的辐射源时差分选方法[J]. 国防科技大学学报, 2012, 34(5): 83–89. doi: 10.3969/j.issn.1001-2486.2012.05.017.MA Shuang, WU Haibin, LIU Zheng, et al. Method for emitter TDOA sorting based on recursive extended histogram[J]. Journal of National University of Defense Technology, 2012, 34(5): 83–89. doi: 10.3969/j.issn.1001-2486.2012.05.017. [7] LU Yang and DENG Zhian. A recursive sorting method based on multi-station TDOA vector[C]. Proceedings of the 8th International Conference on Intelligent Computing and Signal Processing, Xi'an, China, 2023: 1024–1027. doi: 10.1109/ICSP58490.2023.10248871. [8] 马贤同, 罗景青, 孟祥豪. 基于时差的同类辐射源信号分选定位方法[J]. 电子与信息学报, 2015, 37(10): 2363–2368. doi: 10.11999/JEIT141480.MA Xiantong, LUO Jingqing, and MENG Xianghao. Signal sorting and positioning method for similar radiation sources based on time difference of arrival[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2363–2368. doi: 10.11999/JEIT141480. [9] XIANG Zhexi, ZHOU Zou, GU Yu, et al. A multi-station signal sorting method based on time difference pair and azimuth information[M]. LIU Qi, LIU Xiaodong, CHENG Jieren, et al. Proceedings of the 12th International Conference on Computer Engineering and Networks. Singapore: Springer, 2022: 466–475. doi: 10.1007/978-981-19-6901-0_49. [10] ZHAO Zihao, ZHANG Huaguo, and GAN Lu. A multi-station signal sorting method based on TDOA grid clustering[C]. Proceedings of 2021 IEEE 6th International Conference on Signal and Image Processing, Nanjing, China, 2021: 773–778. doi: 10.1109/ICSIP52628.2021.9689025. [11] 李松炜, 杨松岩, 邓志安, 等. 基于自适应流聚类的多站时差协同信号分选方法[J]. 信号处理, 2024, 40(4): 682–694. doi: 10.16798/j.issn.1003-0530.2024.04.007.LI Songwei, YANG Songyan, DENG Zhi’an, et al. Cooperative signal sorting method based on multi-station TDOA and adaptive stream clustering[J]. Journal of Signal Processing, 2024, 40(4): 682–694. doi: 10.16798/j.issn.1003-0530.2024.04.007. [12] 仇洪冰, 周兰兰, 周陬, 等. 基于云模型的辐射源信号多站分选方法[J]. 电子学报, 2022, 50(10): 2469–2477. doi: 10.12263/DZXB.20210212.QIU Hongbing, ZHOU Lanlan, ZHOU Zou, et al. Multi-station sorting method for emitter signal based on cloud model[J]. Acta Electronica Sinica, 2022, 50(10): 2469–2477. doi: 10.12263/DZXB.20210212. [13] 徐英杰, 张敏, 张文俊, 等. 对运动高重频辐射源的三星时差跟踪算法[J]. 信号处理, 2021, 37(8): 1399–1408. doi: 10.16798/j.issn.1003-0530.2021.08.007.XU Yingjie, ZHANG Min, ZHANG Wenjun, et al. The tracking algorithm of triple satellites using TDOA based on moving high pulse repetition frequency radiation emitter[J]. Journal of Signal Processing, 2021, 37(8): 1399–1408. doi: 10.16798/j.issn.1003-0530.2021.08.007. [14] 姜宏志, 赵闯, 胡德秀, 等. 基于时差多参的单脉冲信号实时配对分选[J]. 电子学报, 2021, 49(3): 566–572. doi: 10.12263/DZXB.20191316.JIANG Hongzhi, ZHAO Chuang, HU Dexiu, et al. Real-time deinterleaving algorithm for single pulse signal based on TDOAs and multi-parameter information[J]. Acta Electronica Sinica, 2021, 49(3): 566–572. doi: 10.12263/DZXB.20191316. [15] LAI Yuping, YU Yiying, GUAN Wenbo, et al. A lightweight intrusion detection system using a finite dirichlet mixture model with extended stochastic variational inference[J]. IEEE Transactions on Network and Service Management, 2024, 21(4): 4701–4712. doi: 10.1109/TNSM.2024.3391250. [16] COUILLET R and DEBBAH M. A bayesian framework for collaborative multi-source signal sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5186–5195. doi: 10.1109/TSP.2010.2052921. [17] WANG Zhi, CHEN Chunlin, and DONG Daoyi. A dirichlet process mixture of robust task models for scalable lifelong reinforcement learning[J]. IEEE Transactions on Cybernetics, 2023, 53(12): 7509–7520. doi: 10.1109/TCYB.2022.3170485. [18] HECK M, SAKTI S, and NAKAMURA S. Dirichlet process mixture of mixtures model for unsupervised subword modeling[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(11): 2027–2042. doi: 10.1109/TASLP.2018.2852500. [19] KIM D, PARK J, CHUNG H C, et al. Unsupervised outlier detection using random subspace and subsampling ensembles of Dirichlet process mixtures[J]. Pattern Recognition, 2024, 156: 110846. doi: 10.1016/j.patcog.2024.110846. -