高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向OFDM-NOMA系统的自适应多模盲均衡方案

杨龙 余凯欣 李进 贾子一

杨龙, 余凯欣, 李进, 贾子一. 面向OFDM-NOMA系统的自适应多模盲均衡方案[J]. 电子与信息学报, 2025, 47(8): 2509-2520. doi: 10.11999/JEIT250153
引用本文: 杨龙, 余凯欣, 李进, 贾子一. 面向OFDM-NOMA系统的自适应多模盲均衡方案[J]. 电子与信息学报, 2025, 47(8): 2509-2520. doi: 10.11999/JEIT250153
YANG Long, YU Kaixin, LI Jin, JIA Ziyi. Adaptive Multi-Mode Blind Equalization Scheme for OFDM-NOMA Systems[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2509-2520. doi: 10.11999/JEIT250153
Citation: YANG Long, YU Kaixin, LI Jin, JIA Ziyi. Adaptive Multi-Mode Blind Equalization Scheme for OFDM-NOMA Systems[J]. Journal of Electronics & Information Technology, 2025, 47(8): 2509-2520. doi: 10.11999/JEIT250153

面向OFDM-NOMA系统的自适应多模盲均衡方案

doi: 10.11999/JEIT250153 cstr: 32379.14.JEIT250153
基金项目: 国家自然科学基金(62271368,62371367),陕西省重点研发计划(2023-ZDLGY-50),中央高校基本科研业务费(QTZX23066),陕西省青年科技新星项目(2024ZC-KJXX-080)
详细信息
    作者简介:

    杨龙:男,教授,研究方向为隐蔽通信、信号侦察与识别、非正交多址等

    余凯欣:女,硕士生,研究方向为非正交多址接入、正交频分复用等

    李进:男,讲师,研究方向为盲信号处理、系统识别和估计等

    贾子一:男,博士生,研究方向为非正交多址接入、隐蔽通信、可移动天线、物理层安全等

    通讯作者:

    杨龙 lyang@xidian.edu.cn

  • 中图分类号: TN929.5; TN915.08

Adaptive Multi-Mode Blind Equalization Scheme for OFDM-NOMA Systems

Funds: The National Natural Science Foundation of China (62271368, 62371367), The Key Research and Development Program of Shaanxi (2023-ZDLGY-50), The Fundamental Research Funds for the Central Universities(QTZX23066), The Youth Science and Technology Star Program of Shaanxi (2024ZC-KJXX-080)
  • 摘要: 面向基于正交频分复用的非正交多址接入(NOMA)系统,针对下行链路中非规则星座点均衡困难的问题,该文提出了一种无监督的多模盲均衡方案。该方案联合软决策导向算法,通过结合NOMA功率分配因子,构建指数型代价函数,有效补偿了信道引起的幅度和相位失真。为了最小化代价函数,提出了一种改进的牛顿算法,以快速搜索最优权值。仿真结果表明,相比传统多模均衡算法,所提出的算法稳态最大失真降低了约10倍。此外,在GNURadio平台上搭建软件无线电系统,验证了算法的有效性和可实现性。
  • 图  1  OFDM-NOMA下行通信系统模型图

    图  2  OFDM-NOMA下行系统用户${N_d}$接收机模型

    图  3  代价函数与均衡结果信号的3维曲面图

    图  4  OFDM-NOMA系统仿真拓扑示意图

    图  5  均方误差与信噪比关系曲线(其中用户均QPSK调制)

    图  6  符号误码率与信噪比关系曲线(其中${\alpha _k}$为0.1,用户均QPSK调制)

    图  7  MD与观测样本总数关系曲线(其中${\alpha _k}$为0.1,用户均QPSK调制)

    图  8  MD与迭代次数关系曲线(其中${\alpha _k}$为0.1)

    图  9  均衡前后QAM信号星座图

    图  10  资源分配与帧结构示意图

    图  11  USRP下行通信系统工程实现场景图

    图  12  用户均衡效果星座图与ASCII解码结果

    表  1  算法复杂度对比

    算法$\alpha $-MMA+SDD算法传统牛顿法
    复杂度$ O(K{L^3} + K{L^2}\lambda ) $$O(K{L^3}\tilde T + K{L^2}\tilde T\lambda )$
    下载: 导出CSV

    1  基于功率分配改进的$\alpha $-MMA+SDD均衡迭代算法

     (1)初始化:设置所有子载波的初始均衡器权值,其中子载波$ {\text{S}}{{\text{C}}_k} $的权值为$ {{\boldsymbol{w}}_{k,0}} = {[0, \cdots ,1, \cdots ,0]^{\text{H}}} $,元素1位于向量的中心,精度误差$\varepsilon $,
     最大迭代步数$T$。
     (2)对子载波循环for($ k = 1,2, \cdots ,K $):
     (3) 初始化:初始化迭代步数索引$ t = 0 $,将初始误差$\eta $设置为大于$\varepsilon $,计算输入信号${{\boldsymbol{X}}_k}$的协方差逆矩阵$ {{\stackrel \frown{{\boldsymbol{R}}} }} $。
     (4) 迭代均衡权值while$\eta > \varepsilon $和$t < T$do
     (5)  计算均衡器输出:$ {Y_{k,t}}(n) = {\boldsymbol{w}}_{k,t}^{\text{H}}{{\boldsymbol{x}}_k}(n),\quad \forall n = 1,2, \cdots ,\lambda $;
     (6)  计算代价函数:根据式(4)计算$ J({{\boldsymbol{w}}_k}) $;
     (7)  计算误差修正向量:根据式(5)、式(13)和式(14)计算$ {\tilde g_{k,t}}(n) $,根据式(11)和式(15)计算$ {{\boldsymbol{X}}_k}{{\boldsymbol{g}}_{k,t}} $;
     (8)  更新均衡器权值:$ {{\boldsymbol{w}}_{k,t + 1}} = {{\stackrel \frown{\boldsymbol{R}} }}{{\boldsymbol{X}}_k}{{\boldsymbol{g}}_{k,}}_t $;
     (9)  更新误差:$\eta = {\left\| {{{\boldsymbol{w}}_{k,t + 1}} - {{\boldsymbol{w}}_{k,t}}} \right\|_2}$;
     (10)  更新迭代步数:$ t = t + 1 $;
     (11) 输出子载波$ {{\mathrm{SC}}_k} $上的最终优化权值$ {{\boldsymbol{w}}_k} = {{\boldsymbol{w}}_{k,t}} $;
     (12)结束
    下载: 导出CSV

    表  2  系统仿真参数设置

    参数
    AP坐标 (0, 0)
    $ {N_1} $, $ {N_2} $坐标 (5, 10), (–10, 10)
    $ {F_1} $, $ {F_2} $, $ {F_3} $坐标 (20, 35), (35, 40), (–20, 55)
    近用户覆盖半径$ {r_1} $ 20 m
    远用户覆盖半径$ {r_2} $ 60 m
    子载波数$ K $ 48
    路径损耗常数$ C $ –30 dB
    路径损耗指数$ \gamma $ 3
    样本个数$ \tilde K $ 20
    滤波器阶数$ L $ 7
    方差$ {\sigma ^2} $ 0.25
    下载: 导出CSV
  • [1] HAYKIN S S. Adaptive Filter Theory[M]. 4th ed. Upper Saddle River: Pearson Education, 2002.
    [2] BIGUESH M and GERSHMAN A B. Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 884–893. doi: 10.1109/TSP.2005.863008.
    [3] CHEN Dongyan, HONG Yiguang, and TRIVEDI K S. Optimal estimation of training interval for channel equalization[J]. IEEE Transactions on Wireless Communications, 2004, 3(5): 1844–1853. doi: 10.1109/TWC.2004.828021.
    [4] AN Zeliang, XU Yuqing, TAHIR A, et al. Collaborative learning-based modulation recognition for 6G multibeam satellite communication systems via blind and semi-blind channel equalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5226–5246. doi: 10.1109/TAES.2024.3387447.
    [5] LIU Na, WANG Zuoxun, and WEI Haiwen. Trigonometric coordinate transformation blind equalization algorithm based on bi-direction long and short-term memory neural networks[J]. IEEE Access, 2024, 12: 30653–30660. doi: 10.1109/access.2024.3368857.
    [6] ZHOU Junjie and CHEN Ke. An energy efficient CMA equalizer based on approximate computing[C]. 2024 IEEE 7th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 2024: 402–406. doi: 10.1109/ICEICT61637.2024.10671152.
    [7] CIMINI L. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing[J]. IEEE Transactions on Communications, 1985, 33(7): 665–675. doi: 10.1109/TCOM.1985.1096357.
    [8] ALAYYAN F O, ZOUBIR A M, and LEUNG Y H. Adaptive blind equalization algorithm for QAM signals in OFDM systems by GI-restoration[C]. 2007 9th International Symposium on Signal Processing and Its Applications, Sharjah, United Arab Emirates, 2007: 1–4. doi: 10.1109/ISSPA.2007.4555590.
    [9] ATAPATTU L, ARACHCHIGE G M, ZIRI-CASTRO K, et al. Linear adaptive channel equalization for multiuser MIMO-OFDM systems[C]. Australasian Telecommunication Networks and Applications Conference (ATNAC) 2012, Brisbane, Australia, 2012: 1–5. doi: 10.1109/ATNAC.2012.6398080.
    [10] DING Zhiguo, LIU Yuanwei, CHOI J, et al. Application of non-orthogonal multiple access in LTE and 5G networks[J]. IEEE Communications Magazine, 2017, 55(2): 185–191. doi: 10.1109/MCOM.2017.1500657CM.
    [11] DING Zhiguo, LEI Xianfu, KARAGIANNIDIS G K, et al. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181–2195. doi: 10.1109/JSAC.2017.2725519.
    [12] LI Xingwang, GAO Xuesong, LIU Yingting, et al. Overlay CR-NOMA assisted intelligent transportation system networks with imperfect SIC and CEEs[J]. Chinese Journal of Electronics, 2023, 32(6): 1258–1270. doi: 10.23919/cje.2022.00.071.
    [13] 李兴旺, 田志发, 张建华, 等. IRS辅助NOMA网络下隐蔽通信性能研究[J]. 中国科学: 信息科学, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.

    LI Xingwang, TIAN Zhifa, ZHANG Jianhua, et al. Performance analysis of covert communication in IRS-assisted NOMA networks[J]. Scientia Sinica Informationis, 2024, 54(6): 1502–1515. doi: 10.1360/SSI-2023-0174.
    [14] LI Jin, FENG Dazheng, and ZHENG Weixing. Space-time semi-blind equalizer for dispersive QAM MIMO system based on modified newton method[J]. IEEE Transactions on Wireless Communications, 2014, 13(6): 3244–3256. doi: 10.1109/TWC.2014.041714.121735.
    [15] WANG Liang and WEN Hewen. Soft decision adjusted modulus algorithm for blind equalization[C]. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2022: 1881–1884. doi: 10.1109/ITAIC54216.2022.9836582.
    [16] ZHOU Shanyu, CHU Ran, LIU Guangzu, et al. Design and implementation of high-speed and low-complexity blind equalization algorithm[C]. 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 2023: 597–602. doi: 10.1109/ICSIP57908.2023.10271005.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  168
  • HTML全文浏览量:  99
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-12
  • 修回日期:  2025-07-25
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-08-27

目录

    /

    返回文章
    返回