高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解时变二次规划的抗噪终态零化神经网络:一种三幂次加速策略

仲国民 肖里坤 汪黎明 孙明轩

仲国民, 肖里坤, 汪黎明, 孙明轩. 求解时变二次规划的抗噪终态零化神经网络:一种三幂次加速策略[J]. 电子与信息学报. doi: 10.11999/JEIT250128
引用本文: 仲国民, 肖里坤, 汪黎明, 孙明轩. 求解时变二次规划的抗噪终态零化神经网络:一种三幂次加速策略[J]. 电子与信息学报. doi: 10.11999/JEIT250128
ZHONG Guomin, XIAO Likun, WANG Liming, SUN Mingxuan. Noise-Tolerant Terminal Zeroing Neural Networks for Solving Time-Varying Quadratic Programming: A Triple Power-Rate Speeding-Up Strategy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250128
Citation: ZHONG Guomin, XIAO Likun, WANG Liming, SUN Mingxuan. Noise-Tolerant Terminal Zeroing Neural Networks for Solving Time-Varying Quadratic Programming: A Triple Power-Rate Speeding-Up Strategy[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250128

求解时变二次规划的抗噪终态零化神经网络:一种三幂次加速策略

doi: 10.11999/JEIT250128 cstr: 32379.14.JEIT250128
基金项目: 国家自然科学基金 (62073291, 62222315)
详细信息
    作者简介:

    仲国民:男,讲师,研究方向为系统辨识、迭代学习控制和神经计算

    肖里坤:男,硕士生,研究方向为神经计算和机械臂运动规划

    汪黎明:男,博士生,研究方向为神经计算和机械臂运动规划

    孙明轩:男,教授,研究方向为学习系统和神经计算

    通讯作者:

    仲国民 zgm@zjut.edu.cn

  • 中图分类号: TN911;TP183

Noise-Tolerant Terminal Zeroing Neural Networks for Solving Time-Varying Quadratic Programming: A Triple Power-Rate Speeding-Up Strategy

Funds: The National Natural Science Foundation of China (62073291, 62222315)
  • 摘要: 针对时变等式约束的二次规划问题,该文提出三幂次加速的抗噪终态零化神经网络,实现神经计算误差固定时间收敛。相比于常规双幂次型终态零化神经网络,所提网络收敛速度更快,抗噪性能更强。分析不同参数情况下的收敛过程并给出具体的收敛时间表达式;理论证明该神经网络系统对渐消噪声具有抑制能力。针对冗余机械臂重复运动规划问题,采用三幂次加速的抗噪终态零化神经网络作为求解器,实现固定时间获取末端执行器的期望轨迹。考虑重复运动规划中定常增益优化指标的局限性,设计时变增益优化指标以提高冗余机械臂作业效率。时变二次规划和冗余机械臂的数值仿真结果分别验证三幂次加速的抗噪终态零化神经网络和时变增益优化指标的有效性。
  • 图  1  TPTZNN电路参考图

    图  2  6种ZNN求解时变二次规划

    图  3  不同参数情况下TPTZNN的误差收敛过程

    图  4  TPTZNN求解冗余机械臂重复运动规划

    图  5  时变增益指标下冗余机械臂重复运动规划

  • [1] XIAO Lin, YAN Xiangru, HE Yongjun, et al. A variable-gain fixed-time convergent and robust ZNN model for image fusion: Design, analysis, and verification[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(6): 3415–3426. doi: 10.1109/TSMC.2024.3356530.
    [2] JIN Long, ZHANG Yunong, LI Shuai, et al. Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6978–6988. doi: 10.1109/TIE.2016.2590379.
    [3] ZHANG Zhijun, YANG Song, and ZHENG Lunan. A punishment mechanism-combined recurrent neural network to solve motion-planning problem of redundant robot manipulators[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2177–2185. doi: 10.1109/TCYB.2021.3111204.
    [4] LI Weibing, WU Haimei, and JIN Long. A lower dimension zeroing neural network for time-variant quadratic programming applied to robot pose control[J]. IEEE Transactions on Industrial Informatics, 2024, 20(10): 11835–11843. doi: 10.1109/TII.2024.3413317.
    [5] 廖伍代, 周军. 基于递归型神经网络动力学求解时变凸二次规划[J]. 运筹学学报, 2023, 27(1): 103–114. doi: 10.15960/j.cnki.issn.1007-6093.2023.01.007.

    LIAO Wudai and ZHOU Jun. Recurrent neural network dynamic for time-varying convex quadratic programming[J]. Operations Research Transactions, 2023, 27(1): 103–114. doi: 10.15960/j.cnki.issn.1007-6093.2023.01.007.
    [6] ZHANG Yunong, JIANG Danchi, and WANG Jun. A recurrent neural network for solving Sylvester equation with time-varying coefficients[J]. IEEE Transactions on Neural Networks, 2002, 13(5): 1053–1063. doi: 10.1109/TNN.2002.1031938.
    [7] ZHANG Yunong, MA Weimu, and CAI Binghuang. From Zhang neural network to newton iteration for matrix inversion[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(7): 1405–1415. doi: 10.1109/TCSI.2008.2007065.
    [8] XU Feng, LI Zexin, NIE Zhuoyun, et al. Zeroing neural network for solving time-varying linear equation and inequality systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(8): 2346–2357. doi: 10.1109/TNNLS.2018.2884543.
    [9] XIAO Lin, ZHANG Yongsheng, HU Zeshan, et al. Performance benefits of robust nonlinear zeroing neural network for finding accurate solution of Lyapunov equation in presence of various noises[J]. IEEE Transactions on Industrial Informatics, 2019, 15(9): 5161–5171. doi: 10.1109/TII.2019.2900659.
    [10] LI Shuai, CHEN Sanfeng, and LIU Bo. Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-Bi-power activation function[J]. Neural Processing Letters, 2013, 37(2): 189–205. doi: 10.1007/s11063-012-9241-1.
    [11] JIN Jie, ZHU Jingcan, ZHAO Lv, et al. A robust predefined-time convergence zeroing neural network for dynamic matrix inversion[J]. IEEE Transactions on Cybernetics, 2023, 53(6): 3887–3900. doi: 10.1109/TCYB.2022.3179312.
    [12] LI Shuai and LI Yangming. Nonlinearly activated neural network for solving time-varying complex Sylvester equation[J]. IEEE Transactions on Cybernetics, 2014, 44(8): 1397–1407. doi: 10.1109/TCYB.2013.2285166.
    [13] LUO Jiawei and YANG Hui. A robust zeroing neural network model activated by the special nonlinear function for solving time-variant linear system in predefined-time[J]. Neural Processing Letters, 2022, 54(3): 2201–2217. doi: 10.1007/s11063-021-10726-0.
    [14] CHEN Yuhuan, CHEN Jingjing, and YI Chenfu. A pre-defined finite time neural solver for the time-variant matrix equation E(t)X(t)G(t)=D(t)[J]. Journal of the Franklin Institute, 2024, 361(6): 106710. doi: 10.1016/j.jfranklin.2024.106710.
    [15] TANG Wensheng, CAI Hang, XIAO Lin, et al. A predefined-time adaptive zeroing neural network for solving time-varying linear equations and its application to UR5 robot[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(3): 4703–4712. doi: 10.1109/TNNLS.2024.3373040.
    [16] XIAO Lin, CAO Penglin, HE Yongjun, et al. Predefined-time noise immunity ZNN model for dynamic quaternion least squares problem and application to synchronization of hyperchaotic systems[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 1416–1426. doi: 10.1109/TETCI.2024.3352417.
    [17] ZENG Yuejie, XIAO Lin, LI Kenli, et al. Solving time-varying linear inequalities by finite-time convergent zeroing neural networks[J]. Journal of the Franklin Institute, 2020, 357(12): 8137–8155. doi: 10.1016/j.jfranklin.2020.06.004.
    [18] XIAO Lin, ZHANG Yongsheng, DAI Jianhua, et al. Comprehensive analysis of a new varying parameter zeroing neural network for time varying matrix inversion[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 1604–1613. doi: 10.1109/TII.2020.2989173.
    [19] XIAO Lin, LI Linju, HUANG Wenqian, et al. A new predefined time zeroing neural network with drop conservatism for matrix flows inversion and its application[J]. IEEE Transactions on Cybernetics, 2024, 54(2): 752–761. doi: 10.1109/TCYB.2022.3225155.
    [20] CAO Mengrui, XIAO Lin, ZUO Qiuyue, et al. A fixed-time robust ZNN model with adaptive parameters for redundancy resolution of manipulators[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(6): 3886–3898. doi: 10.1109/TETCI.2024.3377672.
    [21] XIAO Lin, SONG Wentong, LI Xiaopeng, et al. Design and analysis of a noise-resistant ZNN model for settling time-variant linear matrix inequality in predefined-time[J]. IEEE Transactions on Industrial Informatics, 2022, 18(10): 6840–6847. doi: 10.1109/TII.2021.3135383.
    [22] XIAO Lin, ZHANG Yongsheng, DAI Jianhua, et al. A new noise-tolerant and predefined-time ZNN model for time-dependent matrix inversion[J]. Neural Networks, 2019, 117: 124–134. doi: 10.1016/j.neunet.2019.05.005.
    [23] 仲国民, 唐逸飞, 孙明轩. 用于有界噪声时变矩阵计算的终端零化神经网络[J]. 通信学报, 2024, 45(9): 55–67. doi: 10.11959/j.issn.1000-436x.2024166.

    ZHONG Guomin, TANG Yifei, and SUN Mingxuan. Terminal zeroing neural network for time-varying matrix computing under bounded noise[J]. Journal on Communications, 2024, 45(9): 55–67. doi: 10.11959/j.issn.1000-436x.2024166.
    [24] LI Weibing, YI Zilian, RAO Ruiqi, et al. A quadratic programming solution to position-level repetitive motion planning and obstacle avoidance of joint-constrained Robots[J]. IEEE Transactions on Industrial Electronics, 2025, 72(2): 1860–1870. doi: 10.1109/TIE.2024.3406880.
    [25] ZHANG Yang and JIA Yingmin. Motion planning of redundant dual-arm robots with multicriterion optimization[J]. IEEE Systems Journal, 2023, 17(3): 4189–4199. doi: 10.1109/JSYST.2023.3292430.
    [26] LIU Mei and SHANG Mingsheng. Orientation tracking incorporated multicriteria control for redundant manipulators with dynamic neural network[J]. IEEE Transactions on Industrial Electronics, 2024, 71(4): 3801–3810. doi: 10.1109/TIE.2023.3273253.
    [27] ZHONG Guomin, WANG Liming, and SUN Mingxuan. An initial-rectifying-constraint optimization scheme for repetitive motion planning by using prescribed-time zeroing neural networks[J]. IEEE Transactions on Automation Science and Engineering, 2025, 22: 11087–11098. doi: 10.1109/TASE.2025.3531002.
    [28] SUN Mingxuan, ZHANG Yu, WU Yuxin, et al. On a finitely activated terminal RNN approach to time-variant problem solving[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7289–7302. doi: 10.1109/TNNLS.2021.3084740.
    [29] 李杏, 仲国民. 用于时变矩阵计算的固定时间递归神经网络及其在重复运动规划中的应用[J]. 计算机科学, 2024, 51(8): 324–332. doi: 10.11896/jsjkx.230500052.

    LI Xing and ZHONG Guomin. Fixed-time recurrent neural networks for time-variant matrix computing and its application in repeatable motion planning[J]. Computer Science, 2024, 51(8): 324–332. doi: 10.11896/jsjkx.230500052.
    [30] 汪黎明, 仲国民, 孙明轩, 等. 有限值终态零化神经网络及其在机器人运动规划中的应用[J]. 计算机科学, 2025, 52(5): 270–280. doi: 10.11896/jsjkx.240400173.

    WANG Liming, ZHONG Guomin, SUN Mingxuan, et al. Finitely-valued terminal zeroing neural networks with application to robotic motion planning[J]. Computer Science, 2025, 52(5): 270–280. doi: 10.11896/jsjkx.240400173.
  • 加载中
图(5)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-05
  • 修回日期:  2025-08-28
  • 网络出版日期:  2025-09-02

目录

    /

    返回文章
    返回