高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可信度评估的抗噪异质医疗对话持续联邦

刘宇鹏 张江 唐诗晨 孟鑫 孟庆丰

刘宇鹏, 张江, 唐诗晨, 孟鑫, 孟庆丰. 可信度评估的抗噪异质医疗对话持续联邦[J]. 电子与信息学报. doi: 10.11999/JEIT250057
引用本文: 刘宇鹏, 张江, 唐诗晨, 孟鑫, 孟庆丰. 可信度评估的抗噪异质医疗对话持续联邦[J]. 电子与信息学报. doi: 10.11999/JEIT250057
LIU Yupeng, ZHANG Jiang, TANG Shichen, MENG Xin, MENG Qingfeng. Continuous Federation of Noise-resistant Heterogeneous Medical Dialogue Using the Trustworthiness-based Evaluation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250057
Citation: LIU Yupeng, ZHANG Jiang, TANG Shichen, MENG Xin, MENG Qingfeng. Continuous Federation of Noise-resistant Heterogeneous Medical Dialogue Using the Trustworthiness-based Evaluation[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT250057

可信度评估的抗噪异质医疗对话持续联邦

doi: 10.11999/JEIT250057 cstr: 32379.14.JEIT250057
基金项目: 国家自然科学基金(61300115),中国博士后科学基金(2014m561331),黑龙江省教育厅科学技术研究项目(12521073)
详细信息
    作者简介:

    刘宇鹏:男,教授,研究方向为自然语言处理,联邦学习,多模态计算

    张江:男,硕士,研究方向为医疗对话,联邦学习

    唐诗晨:男,硕士,研究方向为自然语言处理

    孟鑫:男,硕士,研究方向为自然语言处理

    孟庆丰:男,硕士,研究方向为自然语言处理

    通讯作者:

    刘宇鹏 flyeagle99@126.com

  • 中图分类号: TN919.5

Continuous Federation of Noise-resistant Heterogeneous Medical Dialogue Using the Trustworthiness-based Evaluation

Funds: The National Natural Science Foundation of China (61300115), China Postdoctoral Science Foundation (2014M561331), The Scientific and Technological Research Project of Heilongjiang Provincial Department of Education (12521073)
  • 摘要: 针对异质和噪声文本,该文通过改进目标函数,聚合方式,本地更新方式等综合考虑,提出基于可信度评估的抗噪异质医疗对话联邦,增强了医疗对话联邦学习的鲁棒性。将模型训练划分为本地训练阶段和异质联邦学习阶段。在本地训练阶段,通过对称交叉熵损失缓解噪声文本问题,防止本地模型在噪声文本上过拟合。在异质联邦学习阶段,通过度量客户端文本质量进行自适应聚合模型以考虑干净,噪声(随机/非随机文本语法和语义)和异质文本。同时在本地参数更新时考虑局部和全局参数以持续自适应的更新参数,可以进一步提高抗噪和异质鲁棒性。实验结果显示,该方法在噪声和异质联邦学习场景下相比其他方法有显著提升。
  • 图  1  总体框架图

    图  2  对话文本噪声示例

    图  3  客户端模型的BLEU指标变化曲线图

    图  4  不同客户端可信度变化图

    图  5  性能对比图

    图  6  同构模型的BLEU变化

    图  7  对称交叉熵和客户端加权对模型性能的影响

    图  8  噪声比例实验

    图  9  客户端数量变化实验

    图  10  噪声问话语境下的文本生成实例

    1  联邦训练算法

     输入:K个客户端的数据集$ {\bar D_1},{\bar D_2}, \cdots ,{\bar D_K} $,自适应权重$ {W_k} $,
     $ {T}_{\mathrm{l}} $, $ {T}_{\mathrm{c}} $
     输出:本地模型$ {\varTheta }_{k} $
     (1) 在每个客户端中,使用带有数据集Dk的对称交叉熵学习损失
     $ {\mathcal{L}}^{\mathrm{S}\mathrm{L}} $来训练本地模型$ {\varTheta }_{k} $,共进行Ti
     (2) 对每个客户端k (并行执行):
     (3) 计算可信度Ck
     (4) 将本地模型$ {\varTheta }_{k} $和可信度Ck发送至服务器
     (5) 等待服务器根据所有客户端的Ck和$ {\varTheta }_{k} $生成全局模型$ {\varTheta }_{0} $,
     $ \forall k \in [1,K] $
     (6) $ {\varTheta }_{k} $←本地自适应聚合 ($ {\varTheta }_{0} $, $ {\varTheta }_{k} $, Wk)
     (7) 更新本地模型$ {\varTheta }_{k} $和自适应权重Wk
     (8) 经过$ {T}_{\mathrm{c}} $轮训练后返回$ {\varTheta }_{k} $
    下载: 导出CSV

    表  1  客户端模型结构参数

    客户端模型层数隐层维度参数量
    1GPT-2-small[30]12768117 M
    2GPT-2[30]241 024345 M
    3BART-base[31]12768130 M
    4BART[31]241 024374 M
    下载: 导出CSV

    表  2  在随机噪声下的性能对比

    方法BLEUROGUE事实一致性
    B-1B-4R-1R-2InconsistencyHallucination
    FedMD19.139.9137.3322.8021.5640.62
    FedDF18.609.6337.1622.6921.9641.16
    MetaFed20.8811.1041.3024.9017.8938.93
    RFLHE21.7610.8841.6826.0317.7539.17
    Fed-NCL22.1811.6142.8526.2416.9537.59
    FedLN23.3813.0244.1627.6914.5336.41
    FedELR23.6113.0244.2427.2314.4336.24
    FedNoRo23.3812.8844.0927.0114.7736.65
    FedRH24.1113.5945.0928.7514.3035.76
    下载: 导出CSV

    表  3  在非随机噪声下的性能对比

    方法BLEUROGUE事实一致性
    B-1B-4R-1R-2InconsistencyHallucination
    FedMD19.7110.1138.8924.0023.7244.28
    FedDF19.139.8338.0823.4624.1544.86
    MetaFed21.6111.5342.425.4719.6742.43
    RFLHE21.8511.3342.926.5619.0141.56
    Fed-NCL22.4011.8943.5226.7818.1539.88
    FedLN23.7713.0744.8628.2514.9238.63
    FedELR23.1213.4244.3227.6414.9838.40
    FedNoRo23.4612.9344.6627.8714.9838.82
    FedRH24.3213.6446.0129.3414.3637.94
    下载: 导出CSV
  • [1] MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
    [2] LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]. The Third Conference on Machine Learning and Systems, Austin, USA, 2020, 2: 429–450.
    [3] TAM K, LI Li, HAN Bo, et al. Federated noisy client learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(1): 1799–1812. doi: 10.1109/TNNLS.2023.3336050. .
    [4] XIE Mingkun and HUANG Shengjun. Partial multi-label learning with noisy label identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3676–3687. doi: 10.1109/TPAMI.2021.3059290.
    [5] ROLNICK D, VEIT A, BELONGIE S, et al. Deep learning is robust to massive label noise[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2017.
    [6] ANG Fan, CHEN Li, ZHAO Nan, et al. Robust federated learning with noisy communication[J]. IEEE Transactions on Communications, 2020, 68(6): 3452–3464. doi: 10.1109/TCOMM.2020.2979149.
    [7] WANG Zhuowei, ZHOU Tianyi, LONG Guodong, et al. FedNoiL: A simple two-level sampling method for federated learning with noisy labels[J]. arXiv preprint arXiv: 2205.10110, 2022.

    WANG Zhuowei, ZHOU Tianyi, LONG Guodong, et al. FedNoiL: A simple two-level sampling method for federated learning with noisy labels[J]. arXiv preprint arXiv: 2205.10110, 2022.
    [8] ZHAO Xinyan, CHEN Liangwei, and CHEN Huanhuan. A weighted heterogeneous graph-based dialog system[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 5212–5217. doi: 10.1109/TNNLS.2021.3124640.
    [9] SONG Wenfeng, HOU Xia, LI Shuai, et al. An intelligent virtual standard patient for medical students training based on oral knowledge graph[J]. IEEE Transactions on Multimedia, 2023, 25: 6132–6145. doi: 10.1109/TMM.2022.3205456.
    [10] YAN Lian, GUAN Yi, WANG Haotian, et al. EIRAD: An evidence-based dialogue system with highly interpretable reasoning path for automatic diagnosis[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(10): 6141–6154. doi: 10.1109/JBHI.2024.3426922.
    [11] FALLAH A, MOKHTARI A, and OZDAGLAR A. Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 300. doi: 10.5555/3495724.3496024.
    [12] FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126–1135. doi: 10.5555/3305381.3305498.
    [13] COLLINS L, HASSANI H, MOKHTARI A, et al. Exploiting shared representations for personalized federated learning[C]. The 38th International Conference on Machine Learning, 2021: 2089–2099.
    [14] TAN Yan, LONG Guodong, LIU Lu, et al. FedProto: Federated prototype learning across heterogeneous clients[C]. The 36th AAAI Conference on Artificial Intelligence, 2022: 8432–8440. doi: 10.1609/aaai.v36i8.20819.
    [15] LI Daliang and WANG Junpu. FedMD: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv: 1910.03581, 2019.

    LI Daliang and WANG Junpu. FedMD: Heterogenous federated learning via model distillation[J]. arXiv preprint arXiv: 1910.03581, 2019.
    [16] LIN Tao, KONG Lingjing, STICH S U, et al. Ensemble distillation for robust model fusion in federated learning[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 198. doi: 10.5555/3495724.3495922.
    [17] WU Chuhan, WU Fangzhao, LYU Lingjuan, et al. Communication-efficient federated learning via knowledge distillation[J]. Nature Communications, 2022, 13(1): 2032. doi: 10.1038/s41467-022-29763-x.
    [18] CHEN Yiqiang, LU Wang, QIN Xin, et al. MetaFed: Federated learning among federations with cyclic knowledge distillation for personalized healthcare[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 16671–16682. doi: 10.1109/TNNLS.2023.3297103.
    [19] CHENG Sijie, WU Jingwen, XIAO Yanghua, et al. FedGEMS: Federated learning of larger server models via selective knowledge fusion[C]. The Tenth International Conference on Learning Representations, 2022: 117–135. doi: 10.18653/v1/2021.findings-naacl.10.
    [20] GHOSH A, HONG J, YIN Dong, et al. Robust federated learning in a heterogeneous environment[J]. arXiv preprint arXiv: 1906.06629, 2019.

    GHOSH A, HONG J, YIN Dong, et al. Robust federated learning in a heterogeneous environment[J]. arXiv preprint arXiv: 1906.06629, 2019.
    [21] TSOUVALAS V, SAEED A, OZCELEBI T, et al. Labeling chaos to learning harmony: Federated learning with noisy labels[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15(2): 22. doi: 10.1145/3626242.
    [22] YANG Xin, YU Hao, GAO Xin, et al. Federated continual learning via knowledge fusion: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 3832–3850. doi: 10.1109/TKDE.2024.3363240.
    [23] YU Lang, GE Lina, WANG Guanghui, et al. PI-Fed: Continual federated learning with parameter-level importance aggregation[J]. IEEE Internet of Things Journal, 2024, 11(22): 37187–37199. doi: 10.1109/JIOT.2024.3440029.
    [24] LI Dongdong, HUANG Nan, WANG Zhe, et al. Personalized federated continual learning for task-incremental biometrics[J]. IEEE Internet of Things Journal, 2023, 10(23): 20776–20788. doi: 10.1109/JIOT.2023.3284843.
    [25] WANG Yisen, MA Xingjun, CHEN Zaiyi, et al. Symmetric cross entropy for robust learning with noisy labels[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019: 322–330. doi: 10.1109/ICCV.2019.00041.
    [26] FANG Xiuwen and YE Mang. Robust federated learning with noisy and heterogeneous clients[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 10062–10071. doi: 10.1109/CVPR52688.2022.00983.
    [27] ZHANG Jianqing, HUA Yang, WANG Hao, et al. FedALA: Adaptive local aggregation for personalized federated learning[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11237–11244. doi: 10.1609/aaai.v37i9.26330.
    [28] ZENG Guangtao, YANG Wenmian, JU Zeqian, et al. MedDialog: Large-scale medical dialogue datasets[C]. The 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 9241–9250. doi: 10.18653/v1/2020.emnlp-main.743.
    [29] WANG Xiao, LIU Qin, GUI Tao, et al. TextFlint: Unified multilingual robustness evaluation toolkit for natural language processing[C]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations, 2021: 347–355. doi: 10.18653/v1/2021.acl-demo.41.
    [30] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[R]. OpenAI blog, 2019.
    [31] LEWIS M, LIU Yinhan, GOYAL N, et al. BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]. The 58th Annual Meeting of the Association for Computational Linguistics, 2020: 7871–7880. doi: 10.18653/v1/2020.acl-main.703.
    [32] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [33] PU Ruizhi, YU Lixing, ZHAN Shaojie, et al. FedELR: When federated learning meets learning with noisy labels[J]. Neural Networks, 2025, 187: 107275. doi: 10.1016/j.neunet.2025.107275.
    [34] WU Nannan, YU Li, JIANG Xuefeng, et al. FedNoRo: Towards noise-robust federated learning by addressing class imbalance and label noise heterogeneity[C]. The Thirty-Second International Joint Conference on Artificial Intelligence, Macao, China, 2023: 492. doi: 10.24963/ijcai.2023/492.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  97
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 修回日期:  2025-07-13
  • 网络出版日期:  2025-07-22

目录

    /

    返回文章
    返回